Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • ai3/tools/acmeserver
  • godog/acmeserver
  • svp-bot/acmeserver
3 results
Show changes
Showing
with 1503 additions and 1008 deletions
// Copyright 2022 The OpenZipkin Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package model
import (
"fmt"
"strconv"
)
// TraceID is a 128 bit number internally stored as 2x uint64 (high & low).
// In case of 64 bit traceIDs, the value can be found in Low.
type TraceID struct {
High uint64
Low uint64
}
// Empty returns if TraceID has zero value.
func (t TraceID) Empty() bool {
return t.Low == 0 && t.High == 0
}
// String outputs the 128-bit traceID as hex string.
func (t TraceID) String() string {
if t.High == 0 {
return fmt.Sprintf("%016x", t.Low)
}
return fmt.Sprintf("%016x%016x", t.High, t.Low)
}
// TraceIDFromHex returns the TraceID from a hex string.
func TraceIDFromHex(h string) (t TraceID, err error) {
if len(h) > 16 {
if t.High, err = strconv.ParseUint(h[0:len(h)-16], 16, 64); err != nil {
return
}
t.Low, err = strconv.ParseUint(h[len(h)-16:], 16, 64)
return
}
t.Low, err = strconv.ParseUint(h, 16, 64)
return
}
// MarshalJSON custom JSON serializer to export the TraceID in the required
// zero padded hex representation.
func (t TraceID) MarshalJSON() ([]byte, error) {
return []byte(fmt.Sprintf("%q", t.String())), nil
}
// UnmarshalJSON custom JSON deserializer to retrieve the traceID from the hex
// encoded representation.
func (t *TraceID) UnmarshalJSON(traceID []byte) error {
if len(traceID) < 3 {
return ErrValidTraceIDRequired
}
// A valid JSON string is encoded wrapped in double quotes. We need to trim
// these before converting the hex payload.
tID, err := TraceIDFromHex(string(traceID[1 : len(traceID)-1]))
if err != nil {
return err
}
*t = tID
return nil
}
command-line-arguments.test
See [![go-doc](https://godoc.org/github.com/prometheus/client_golang/prometheus?status.svg)](https://godoc.org/github.com/prometheus/client_golang/prometheus).
See [![Go Reference](https://pkg.go.dev/badge/github.com/prometheus/client_golang/prometheus.svg)](https://pkg.go.dev/github.com/prometheus/client_golang/prometheus).
// Copyright 2021 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import "runtime/debug"
// NewBuildInfoCollector is the obsolete version of collectors.NewBuildInfoCollector.
// See there for documentation.
//
// Deprecated: Use collectors.NewBuildInfoCollector instead.
func NewBuildInfoCollector() Collector {
path, version, sum := "unknown", "unknown", "unknown"
if bi, ok := debug.ReadBuildInfo(); ok {
path = bi.Main.Path
version = bi.Main.Version
sum = bi.Main.Sum
}
c := &selfCollector{MustNewConstMetric(
NewDesc(
"go_build_info",
"Build information about the main Go module.",
nil, Labels{"path": path, "version": version, "checksum": sum},
),
GaugeValue, 1)}
c.init(c.self)
return c
}
......@@ -79,7 +79,7 @@ type Collector interface {
// of the Describe method. If a Collector sometimes collects no metrics at all
// (for example vectors like CounterVec, GaugeVec, etc., which only collect
// metrics after a metric with a fully specified label set has been accessed),
// it might even get registered as an unchecked Collecter (cf. the Register
// it might even get registered as an unchecked Collector (cf. the Register
// method of the Registerer interface). Hence, only use this shortcut
// implementation of Describe if you are certain to fulfill the contract.
//
......@@ -118,3 +118,11 @@ func (c *selfCollector) Describe(ch chan<- *Desc) {
func (c *selfCollector) Collect(ch chan<- Metric) {
ch <- c.self
}
// collectorMetric is a metric that is also a collector.
// Because of selfCollector, most (if not all) Metrics in
// this package are also collectors.
type collectorMetric interface {
Metric
Collector
}
......@@ -17,6 +17,7 @@ import (
"errors"
"math"
"sync/atomic"
"time"
dto "github.com/prometheus/client_model/go"
)
......@@ -42,11 +43,27 @@ type Counter interface {
Add(float64)
}
// ExemplarAdder is implemented by Counters that offer the option of adding a
// value to the Counter together with an exemplar. Its AddWithExemplar method
// works like the Add method of the Counter interface but also replaces the
// currently saved exemplar (if any) with a new one, created from the provided
// value, the current time as timestamp, and the provided labels. Empty Labels
// will lead to a valid (label-less) exemplar. But if Labels is nil, the current
// exemplar is left in place. AddWithExemplar panics if the value is < 0, if any
// of the provided labels are invalid, or if the provided labels contain more
// than 64 runes in total.
type ExemplarAdder interface {
AddWithExemplar(value float64, exemplar Labels)
}
// CounterOpts is an alias for Opts. See there for doc comments.
type CounterOpts Opts
// NewCounter creates a new Counter based on the provided CounterOpts.
//
// The returned implementation also implements ExemplarAdder. It is safe to
// perform the corresponding type assertion.
//
// The returned implementation tracks the counter value in two separate
// variables, a float64 and a uint64. The latter is used to track calls of the
// Inc method and calls of the Add method with a value that can be represented
......@@ -61,7 +78,7 @@ func NewCounter(opts CounterOpts) Counter {
nil,
opts.ConstLabels,
)
result := &counter{desc: desc, labelPairs: desc.constLabelPairs}
result := &counter{desc: desc, labelPairs: desc.constLabelPairs, now: time.Now}
result.init(result) // Init self-collection.
return result
}
......@@ -78,6 +95,9 @@ type counter struct {
desc *Desc
labelPairs []*dto.LabelPair
exemplar atomic.Value // Containing nil or a *dto.Exemplar.
now func() time.Time // To mock out time.Now() for testing.
}
func (c *counter) Desc() *Desc {
......@@ -88,6 +108,7 @@ func (c *counter) Add(v float64) {
if v < 0 {
panic(errors.New("counter cannot decrease in value"))
}
ival := uint64(v)
if float64(ival) == v {
atomic.AddUint64(&c.valInt, ival)
......@@ -103,16 +124,41 @@ func (c *counter) Add(v float64) {
}
}
func (c *counter) AddWithExemplar(v float64, e Labels) {
c.Add(v)
c.updateExemplar(v, e)
}
func (c *counter) Inc() {
atomic.AddUint64(&c.valInt, 1)
}
func (c *counter) Write(out *dto.Metric) error {
func (c *counter) get() float64 {
fval := math.Float64frombits(atomic.LoadUint64(&c.valBits))
ival := atomic.LoadUint64(&c.valInt)
val := fval + float64(ival)
return fval + float64(ival)
}
func (c *counter) Write(out *dto.Metric) error {
val := c.get()
return populateMetric(CounterValue, val, c.labelPairs, out)
var exemplar *dto.Exemplar
if e := c.exemplar.Load(); e != nil {
exemplar = e.(*dto.Exemplar)
}
return populateMetric(CounterValue, val, c.labelPairs, exemplar, out)
}
func (c *counter) updateExemplar(v float64, l Labels) {
if l == nil {
return
}
e, err := newExemplar(v, c.now(), l)
if err != nil {
panic(err)
}
c.exemplar.Store(e)
}
// CounterVec is a Collector that bundles a set of Counters that all share the
......@@ -121,7 +167,7 @@ func (c *counter) Write(out *dto.Metric) error {
// (e.g. number of HTTP requests, partitioned by response code and
// method). Create instances with NewCounterVec.
type CounterVec struct {
*metricVec
*MetricVec
}
// NewCounterVec creates a new CounterVec based on the provided CounterOpts and
......@@ -134,11 +180,11 @@ func NewCounterVec(opts CounterOpts, labelNames []string) *CounterVec {
opts.ConstLabels,
)
return &CounterVec{
metricVec: newMetricVec(desc, func(lvs ...string) Metric {
MetricVec: NewMetricVec(desc, func(lvs ...string) Metric {
if len(lvs) != len(desc.variableLabels) {
panic(makeInconsistentCardinalityError(desc.fqName, desc.variableLabels, lvs))
}
result := &counter{desc: desc, labelPairs: makeLabelPairs(desc, lvs)}
result := &counter{desc: desc, labelPairs: MakeLabelPairs(desc, lvs), now: time.Now}
result.init(result) // Init self-collection.
return result
}),
......@@ -146,7 +192,7 @@ func NewCounterVec(opts CounterOpts, labelNames []string) *CounterVec {
}
// GetMetricWithLabelValues returns the Counter for the given slice of label
// values (same order as the VariableLabels in Desc). If that combination of
// values (same order as the variable labels in Desc). If that combination of
// label values is accessed for the first time, a new Counter is created.
//
// It is possible to call this method without using the returned Counter to only
......@@ -160,7 +206,7 @@ func NewCounterVec(opts CounterOpts, labelNames []string) *CounterVec {
// Counter with the same label values is created later.
//
// An error is returned if the number of label values is not the same as the
// number of VariableLabels in Desc (minus any curried labels).
// number of variable labels in Desc (minus any curried labels).
//
// Note that for more than one label value, this method is prone to mistakes
// caused by an incorrect order of arguments. Consider GetMetricWith(Labels) as
......@@ -169,7 +215,7 @@ func NewCounterVec(opts CounterOpts, labelNames []string) *CounterVec {
// with a performance overhead (for creating and processing the Labels map).
// See also the GaugeVec example.
func (v *CounterVec) GetMetricWithLabelValues(lvs ...string) (Counter, error) {
metric, err := v.metricVec.getMetricWithLabelValues(lvs...)
metric, err := v.MetricVec.GetMetricWithLabelValues(lvs...)
if metric != nil {
return metric.(Counter), err
}
......@@ -177,19 +223,19 @@ func (v *CounterVec) GetMetricWithLabelValues(lvs ...string) (Counter, error) {
}
// GetMetricWith returns the Counter for the given Labels map (the label names
// must match those of the VariableLabels in Desc). If that label map is
// must match those of the variable labels in Desc). If that label map is
// accessed for the first time, a new Counter is created. Implications of
// creating a Counter without using it and keeping the Counter for later use are
// the same as for GetMetricWithLabelValues.
//
// An error is returned if the number and names of the Labels are inconsistent
// with those of the VariableLabels in Desc (minus any curried labels).
// with those of the variable labels in Desc (minus any curried labels).
//
// This method is used for the same purpose as
// GetMetricWithLabelValues(...string). See there for pros and cons of the two
// methods.
func (v *CounterVec) GetMetricWith(labels Labels) (Counter, error) {
metric, err := v.metricVec.getMetricWith(labels)
metric, err := v.MetricVec.GetMetricWith(labels)
if metric != nil {
return metric.(Counter), err
}
......@@ -233,7 +279,7 @@ func (v *CounterVec) With(labels Labels) Counter {
// registered with a given registry (usually the uncurried version). The Reset
// method deletes all metrics, even if called on a curried vector.
func (v *CounterVec) CurryWith(labels Labels) (*CounterVec, error) {
vec, err := v.curryWith(labels)
vec, err := v.MetricVec.CurryWith(labels)
if vec != nil {
return &CounterVec{vec}, err
}
......@@ -267,6 +313,8 @@ type CounterFunc interface {
// provided function must be concurrency-safe. The function should also honor
// the contract for a Counter (values only go up, not down), but compliance will
// not be checked.
//
// Check out the ExampleGaugeFunc examples for the similar GaugeFunc.
func NewCounterFunc(opts CounterOpts, function func() float64) CounterFunc {
return newValueFunc(NewDesc(
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
......
......@@ -19,6 +19,8 @@ import (
"sort"
"strings"
"github.com/cespare/xxhash/v2"
//nolint:staticcheck // Ignore SA1019. Need to keep deprecated package for compatibility.
"github.com/golang/protobuf/proto"
"github.com/prometheus/common/model"
......@@ -49,7 +51,7 @@ type Desc struct {
// constLabelPairs contains precalculated DTO label pairs based on
// the constant labels.
constLabelPairs []*dto.LabelPair
// VariableLabels contains names of labels for which the metric
// variableLabels contains names of labels for which the metric
// maintains variable values.
variableLabels []string
// id is a hash of the values of the ConstLabels and fqName. This
......@@ -93,7 +95,7 @@ func NewDesc(fqName, help string, variableLabels []string, constLabels Labels) *
// First add only the const label names and sort them...
for labelName := range constLabels {
if !checkLabelName(labelName) {
d.err = fmt.Errorf("%q is not a valid label name", labelName)
d.err = fmt.Errorf("%q is not a valid label name for metric %q", labelName, fqName)
return d
}
labelNames = append(labelNames, labelName)
......@@ -115,7 +117,7 @@ func NewDesc(fqName, help string, variableLabels []string, constLabels Labels) *
// dimension with a different mix between preset and variable labels.
for _, labelName := range variableLabels {
if !checkLabelName(labelName) {
d.err = fmt.Errorf("%q is not a valid label name", labelName)
d.err = fmt.Errorf("%q is not a valid label name for metric %q", labelName, fqName)
return d
}
labelNames = append(labelNames, "$"+labelName)
......@@ -126,24 +128,24 @@ func NewDesc(fqName, help string, variableLabels []string, constLabels Labels) *
return d
}
vh := hashNew()
xxh := xxhash.New()
for _, val := range labelValues {
vh = hashAdd(vh, val)
vh = hashAddByte(vh, separatorByte)
xxh.WriteString(val)
xxh.Write(separatorByteSlice)
}
d.id = vh
d.id = xxh.Sum64()
// Sort labelNames so that order doesn't matter for the hash.
sort.Strings(labelNames)
// Now hash together (in this order) the help string and the sorted
// label names.
lh := hashNew()
lh = hashAdd(lh, help)
lh = hashAddByte(lh, separatorByte)
xxh.Reset()
xxh.WriteString(help)
xxh.Write(separatorByteSlice)
for _, labelName := range labelNames {
lh = hashAdd(lh, labelName)
lh = hashAddByte(lh, separatorByte)
xxh.WriteString(labelName)
xxh.Write(separatorByteSlice)
}
d.dimHash = lh
d.dimHash = xxh.Sum64()
d.constLabelPairs = make([]*dto.LabelPair, 0, len(constLabels))
for n, v := range constLabels {
......
......@@ -84,25 +84,21 @@
// of those four metric types can be found in the Prometheus docs:
// https://prometheus.io/docs/concepts/metric_types/
//
// A fifth "type" of metric is Untyped. It behaves like a Gauge, but signals the
// Prometheus server not to assume anything about its type.
//
// In addition to the fundamental metric types Gauge, Counter, Summary,
// Histogram, and Untyped, a very important part of the Prometheus data model is
// the partitioning of samples along dimensions called labels, which results in
// In addition to the fundamental metric types Gauge, Counter, Summary, and
// Histogram, a very important part of the Prometheus data model is the
// partitioning of samples along dimensions called labels, which results in
// metric vectors. The fundamental types are GaugeVec, CounterVec, SummaryVec,
// HistogramVec, and UntypedVec.
// and HistogramVec.
//
// While only the fundamental metric types implement the Metric interface, both
// the metrics and their vector versions implement the Collector interface. A
// Collector manages the collection of a number of Metrics, but for convenience,
// a Metric can also “collect itself”. Note that Gauge, Counter, Summary,
// Histogram, and Untyped are interfaces themselves while GaugeVec, CounterVec,
// SummaryVec, HistogramVec, and UntypedVec are not.
// a Metric can also “collect itself”. Note that Gauge, Counter, Summary, and
// Histogram are interfaces themselves while GaugeVec, CounterVec, SummaryVec,
// and HistogramVec are not.
//
// To create instances of Metrics and their vector versions, you need a suitable
// …Opts struct, i.e. GaugeOpts, CounterOpts, SummaryOpts, HistogramOpts, or
// UntypedOpts.
// …Opts struct, i.e. GaugeOpts, CounterOpts, SummaryOpts, or HistogramOpts.
//
// Custom Collectors and constant Metrics
//
......@@ -118,17 +114,20 @@
// existing numbers into Prometheus Metrics during collection. An own
// implementation of the Collector interface is perfect for that. You can create
// Metric instances “on the fly” using NewConstMetric, NewConstHistogram, and
// NewConstSummary (and their respective Must… versions). That will happen in
// the Collect method. The Describe method has to return separate Desc
// instances, representative of the “throw-away” metrics to be created later.
// NewDesc comes in handy to create those Desc instances. Alternatively, you
// could return no Desc at all, which will marke the Collector “unchecked”. No
// checks are porformed at registration time, but metric consistency will still
// be ensured at scrape time, i.e. any inconsistencies will lead to scrape
// NewConstSummary (and their respective Must… versions). NewConstMetric is used
// for all metric types with just a float64 as their value: Counter, Gauge, and
// a special “type” called Untyped. Use the latter if you are not sure if the
// mirrored metric is a Counter or a Gauge. Creation of the Metric instance
// happens in the Collect method. The Describe method has to return separate
// Desc instances, representative of the “throw-away” metrics to be created
// later. NewDesc comes in handy to create those Desc instances. Alternatively,
// you could return no Desc at all, which will mark the Collector “unchecked”.
// No checks are performed at registration time, but metric consistency will
// still be ensured at scrape time, i.e. any inconsistencies will lead to scrape
// errors. Thus, with unchecked Collectors, the responsibility to not collect
// metrics that lead to inconsistencies in the total scrape result lies with the
// implementer of the Collector. While this is not a desirable state, it is
// sometimes necessary. The typical use case is a situatios where the exact
// sometimes necessary. The typical use case is a situation where the exact
// metrics to be returned by a Collector cannot be predicted at registration
// time, but the implementer has sufficient knowledge of the whole system to
// guarantee metric consistency.
......@@ -183,7 +182,6 @@
// method can then expose the gathered metrics in some way. Usually, the metrics
// are served via HTTP on the /metrics endpoint. That's happening in the example
// above. The tools to expose metrics via HTTP are in the promhttp sub-package.
// (The top-level functions in the prometheus package are deprecated.)
//
// Pushing to the Pushgateway
//
......
......@@ -22,43 +22,10 @@ type expvarCollector struct {
exports map[string]*Desc
}
// NewExpvarCollector returns a newly allocated expvar Collector that still has
// to be registered with a Prometheus registry.
// NewExpvarCollector is the obsolete version of collectors.NewExpvarCollector.
// See there for documentation.
//
// An expvar Collector collects metrics from the expvar interface. It provides a
// quick way to expose numeric values that are already exported via expvar as
// Prometheus metrics. Note that the data models of expvar and Prometheus are
// fundamentally different, and that the expvar Collector is inherently slower
// than native Prometheus metrics. Thus, the expvar Collector is probably great
// for experiments and prototying, but you should seriously consider a more
// direct implementation of Prometheus metrics for monitoring production
// systems.
//
// The exports map has the following meaning:
//
// The keys in the map correspond to expvar keys, i.e. for every expvar key you
// want to export as Prometheus metric, you need an entry in the exports
// map. The descriptor mapped to each key describes how to export the expvar
// value. It defines the name and the help string of the Prometheus metric
// proxying the expvar value. The type will always be Untyped.
//
// For descriptors without variable labels, the expvar value must be a number or
// a bool. The number is then directly exported as the Prometheus sample
// value. (For a bool, 'false' translates to 0 and 'true' to 1). Expvar values
// that are not numbers or bools are silently ignored.
//
// If the descriptor has one variable label, the expvar value must be an expvar
// map. The keys in the expvar map become the various values of the one
// Prometheus label. The values in the expvar map must be numbers or bools again
// as above.
//
// For descriptors with more than one variable label, the expvar must be a
// nested expvar map, i.e. where the values of the topmost map are maps again
// etc. until a depth is reached that corresponds to the number of labels. The
// leaves of that structure must be numbers or bools as above to serve as the
// sample values.
//
// Anything that does not fit into the scheme above is silently ignored.
// Deprecated: Use collectors.NewExpvarCollector instead.
func NewExpvarCollector(exports map[string]*Desc) Collector {
return &expvarCollector{
exports: exports,
......
......@@ -123,7 +123,7 @@ func (g *gauge) Sub(val float64) {
func (g *gauge) Write(out *dto.Metric) error {
val := math.Float64frombits(atomic.LoadUint64(&g.valBits))
return populateMetric(GaugeValue, val, g.labelPairs, out)
return populateMetric(GaugeValue, val, g.labelPairs, nil, out)
}
// GaugeVec is a Collector that bundles a set of Gauges that all share the same
......@@ -132,7 +132,7 @@ func (g *gauge) Write(out *dto.Metric) error {
// (e.g. number of operations queued, partitioned by user and operation
// type). Create instances with NewGaugeVec.
type GaugeVec struct {
*metricVec
*MetricVec
}
// NewGaugeVec creates a new GaugeVec based on the provided GaugeOpts and
......@@ -145,11 +145,11 @@ func NewGaugeVec(opts GaugeOpts, labelNames []string) *GaugeVec {
opts.ConstLabels,
)
return &GaugeVec{
metricVec: newMetricVec(desc, func(lvs ...string) Metric {
MetricVec: NewMetricVec(desc, func(lvs ...string) Metric {
if len(lvs) != len(desc.variableLabels) {
panic(makeInconsistentCardinalityError(desc.fqName, desc.variableLabels, lvs))
}
result := &gauge{desc: desc, labelPairs: makeLabelPairs(desc, lvs)}
result := &gauge{desc: desc, labelPairs: MakeLabelPairs(desc, lvs)}
result.init(result) // Init self-collection.
return result
}),
......@@ -157,7 +157,7 @@ func NewGaugeVec(opts GaugeOpts, labelNames []string) *GaugeVec {
}
// GetMetricWithLabelValues returns the Gauge for the given slice of label
// values (same order as the VariableLabels in Desc). If that combination of
// values (same order as the variable labels in Desc). If that combination of
// label values is accessed for the first time, a new Gauge is created.
//
// It is possible to call this method without using the returned Gauge to only
......@@ -172,7 +172,7 @@ func NewGaugeVec(opts GaugeOpts, labelNames []string) *GaugeVec {
// example.
//
// An error is returned if the number of label values is not the same as the
// number of VariableLabels in Desc (minus any curried labels).
// number of variable labels in Desc (minus any curried labels).
//
// Note that for more than one label value, this method is prone to mistakes
// caused by an incorrect order of arguments. Consider GetMetricWith(Labels) as
......@@ -180,7 +180,7 @@ func NewGaugeVec(opts GaugeOpts, labelNames []string) *GaugeVec {
// latter has a much more readable (albeit more verbose) syntax, but it comes
// with a performance overhead (for creating and processing the Labels map).
func (v *GaugeVec) GetMetricWithLabelValues(lvs ...string) (Gauge, error) {
metric, err := v.metricVec.getMetricWithLabelValues(lvs...)
metric, err := v.MetricVec.GetMetricWithLabelValues(lvs...)
if metric != nil {
return metric.(Gauge), err
}
......@@ -188,19 +188,19 @@ func (v *GaugeVec) GetMetricWithLabelValues(lvs ...string) (Gauge, error) {
}
// GetMetricWith returns the Gauge for the given Labels map (the label names
// must match those of the VariableLabels in Desc). If that label map is
// must match those of the variable labels in Desc). If that label map is
// accessed for the first time, a new Gauge is created. Implications of
// creating a Gauge without using it and keeping the Gauge for later use are
// the same as for GetMetricWithLabelValues.
//
// An error is returned if the number and names of the Labels are inconsistent
// with those of the VariableLabels in Desc (minus any curried labels).
// with those of the variable labels in Desc (minus any curried labels).
//
// This method is used for the same purpose as
// GetMetricWithLabelValues(...string). See there for pros and cons of the two
// methods.
func (v *GaugeVec) GetMetricWith(labels Labels) (Gauge, error) {
metric, err := v.metricVec.getMetricWith(labels)
metric, err := v.MetricVec.GetMetricWith(labels)
if metric != nil {
return metric.(Gauge), err
}
......@@ -244,7 +244,7 @@ func (v *GaugeVec) With(labels Labels) Gauge {
// registered with a given registry (usually the uncurried version). The Reset
// method deletes all metrics, even if called on a curried vector.
func (v *GaugeVec) CurryWith(labels Labels) (*GaugeVec, error) {
vec, err := v.curryWith(labels)
vec, err := v.MetricVec.CurryWith(labels)
if vec != nil {
return &GaugeVec{vec}, err
}
......@@ -273,9 +273,12 @@ type GaugeFunc interface {
// NewGaugeFunc creates a new GaugeFunc based on the provided GaugeOpts. The
// value reported is determined by calling the given function from within the
// Write method. Take into account that metric collection may happen
// concurrently. If that results in concurrent calls to Write, like in the case
// where a GaugeFunc is directly registered with Prometheus, the provided
// function must be concurrency-safe.
// concurrently. Therefore, it must be safe to call the provided function
// concurrently.
//
// NewGaugeFunc is a good way to create an “info” style metric with a constant
// value of 1. Example:
// https://github.com/prometheus/common/blob/8558a5b7db3c84fa38b4766966059a7bd5bfa2ee/version/info.go#L36-L56
func NewGaugeFunc(opts GaugeOpts, function func() float64) GaugeFunc {
return newValueFunc(NewDesc(
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
......
......@@ -14,30 +14,203 @@
package prometheus
import (
"fmt"
"runtime"
"runtime/debug"
"time"
)
type goCollector struct {
func goRuntimeMemStats() memStatsMetrics {
return memStatsMetrics{
{
desc: NewDesc(
memstatNamespace("alloc_bytes"),
"Number of bytes allocated and still in use.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.Alloc) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("alloc_bytes_total"),
"Total number of bytes allocated, even if freed.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.TotalAlloc) },
valType: CounterValue,
}, {
desc: NewDesc(
memstatNamespace("sys_bytes"),
"Number of bytes obtained from system.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.Sys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("lookups_total"),
"Total number of pointer lookups.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.Lookups) },
valType: CounterValue,
}, {
desc: NewDesc(
memstatNamespace("mallocs_total"),
"Total number of mallocs.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.Mallocs) },
valType: CounterValue,
}, {
desc: NewDesc(
memstatNamespace("frees_total"),
"Total number of frees.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.Frees) },
valType: CounterValue,
}, {
desc: NewDesc(
memstatNamespace("heap_alloc_bytes"),
"Number of heap bytes allocated and still in use.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.HeapAlloc) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("heap_sys_bytes"),
"Number of heap bytes obtained from system.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.HeapSys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("heap_idle_bytes"),
"Number of heap bytes waiting to be used.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.HeapIdle) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("heap_inuse_bytes"),
"Number of heap bytes that are in use.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.HeapInuse) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("heap_released_bytes"),
"Number of heap bytes released to OS.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.HeapReleased) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("heap_objects"),
"Number of allocated objects.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.HeapObjects) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("stack_inuse_bytes"),
"Number of bytes in use by the stack allocator.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.StackInuse) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("stack_sys_bytes"),
"Number of bytes obtained from system for stack allocator.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.StackSys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("mspan_inuse_bytes"),
"Number of bytes in use by mspan structures.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.MSpanInuse) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("mspan_sys_bytes"),
"Number of bytes used for mspan structures obtained from system.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.MSpanSys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("mcache_inuse_bytes"),
"Number of bytes in use by mcache structures.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.MCacheInuse) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("mcache_sys_bytes"),
"Number of bytes used for mcache structures obtained from system.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.MCacheSys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("buck_hash_sys_bytes"),
"Number of bytes used by the profiling bucket hash table.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.BuckHashSys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("gc_sys_bytes"),
"Number of bytes used for garbage collection system metadata.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.GCSys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("other_sys_bytes"),
"Number of bytes used for other system allocations.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.OtherSys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("next_gc_bytes"),
"Number of heap bytes when next garbage collection will take place.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.NextGC) },
valType: GaugeValue,
},
}
}
type baseGoCollector struct {
goroutinesDesc *Desc
threadsDesc *Desc
gcDesc *Desc
gcLastTimeDesc *Desc
goInfoDesc *Desc
// metrics to describe and collect
metrics memStatsMetrics
}
// NewGoCollector returns a collector which exports metrics about the current Go
// process. This includes memory stats. To collect those, runtime.ReadMemStats
// is called. This causes a stop-the-world, which is very short with Go1.9+
// (~25µs). However, with older Go versions, the stop-the-world duration depends
// on the heap size and can be quite significant (~1.7 ms/GiB as per
// https://go-review.googlesource.com/c/go/+/34937).
func NewGoCollector() Collector {
return &goCollector{
func newBaseGoCollector() baseGoCollector {
return baseGoCollector{
goroutinesDesc: NewDesc(
"go_goroutines",
"Number of goroutines that currently exist.",
......@@ -48,227 +221,30 @@ func NewGoCollector() Collector {
nil, nil),
gcDesc: NewDesc(
"go_gc_duration_seconds",
"A summary of the GC invocation durations.",
"A summary of the pause duration of garbage collection cycles.",
nil, nil),
gcLastTimeDesc: NewDesc(
memstatNamespace("last_gc_time_seconds"),
"Number of seconds since 1970 of last garbage collection.",
nil, nil),
goInfoDesc: NewDesc(
"go_info",
"Information about the Go environment.",
nil, Labels{"version": runtime.Version()}),
metrics: memStatsMetrics{
{
desc: NewDesc(
memstatNamespace("alloc_bytes"),
"Number of bytes allocated and still in use.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.Alloc) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("alloc_bytes_total"),
"Total number of bytes allocated, even if freed.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.TotalAlloc) },
valType: CounterValue,
}, {
desc: NewDesc(
memstatNamespace("sys_bytes"),
"Number of bytes obtained from system.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.Sys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("lookups_total"),
"Total number of pointer lookups.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.Lookups) },
valType: CounterValue,
}, {
desc: NewDesc(
memstatNamespace("mallocs_total"),
"Total number of mallocs.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.Mallocs) },
valType: CounterValue,
}, {
desc: NewDesc(
memstatNamespace("frees_total"),
"Total number of frees.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.Frees) },
valType: CounterValue,
}, {
desc: NewDesc(
memstatNamespace("heap_alloc_bytes"),
"Number of heap bytes allocated and still in use.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.HeapAlloc) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("heap_sys_bytes"),
"Number of heap bytes obtained from system.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.HeapSys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("heap_idle_bytes"),
"Number of heap bytes waiting to be used.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.HeapIdle) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("heap_inuse_bytes"),
"Number of heap bytes that are in use.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.HeapInuse) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("heap_released_bytes"),
"Number of heap bytes released to OS.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.HeapReleased) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("heap_objects"),
"Number of allocated objects.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.HeapObjects) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("stack_inuse_bytes"),
"Number of bytes in use by the stack allocator.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.StackInuse) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("stack_sys_bytes"),
"Number of bytes obtained from system for stack allocator.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.StackSys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("mspan_inuse_bytes"),
"Number of bytes in use by mspan structures.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.MSpanInuse) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("mspan_sys_bytes"),
"Number of bytes used for mspan structures obtained from system.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.MSpanSys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("mcache_inuse_bytes"),
"Number of bytes in use by mcache structures.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.MCacheInuse) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("mcache_sys_bytes"),
"Number of bytes used for mcache structures obtained from system.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.MCacheSys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("buck_hash_sys_bytes"),
"Number of bytes used by the profiling bucket hash table.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.BuckHashSys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("gc_sys_bytes"),
"Number of bytes used for garbage collection system metadata.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.GCSys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("other_sys_bytes"),
"Number of bytes used for other system allocations.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.OtherSys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("next_gc_bytes"),
"Number of heap bytes when next garbage collection will take place.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.NextGC) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("last_gc_time_seconds"),
"Number of seconds since 1970 of last garbage collection.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.LastGC) / 1e9 },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("gc_cpu_fraction"),
"The fraction of this program's available CPU time used by the GC since the program started.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return ms.GCCPUFraction },
valType: GaugeValue,
},
},
}
}
func memstatNamespace(s string) string {
return fmt.Sprintf("go_memstats_%s", s)
}
// Describe returns all descriptions of the collector.
func (c *goCollector) Describe(ch chan<- *Desc) {
func (c *baseGoCollector) Describe(ch chan<- *Desc) {
ch <- c.goroutinesDesc
ch <- c.threadsDesc
ch <- c.gcDesc
ch <- c.gcLastTimeDesc
ch <- c.goInfoDesc
for _, i := range c.metrics {
ch <- i.desc
}
}
// Collect returns the current state of all metrics of the collector.
func (c *goCollector) Collect(ch chan<- Metric) {
func (c *baseGoCollector) Collect(ch chan<- Metric) {
ch <- MustNewConstMetric(c.goroutinesDesc, GaugeValue, float64(runtime.NumGoroutine()))
n, _ := runtime.ThreadCreateProfile(nil)
ch <- MustNewConstMetric(c.threadsDesc, GaugeValue, float64(n))
......@@ -283,17 +259,17 @@ func (c *goCollector) Collect(ch chan<- Metric) {
}
quantiles[0.0] = stats.PauseQuantiles[0].Seconds()
ch <- MustNewConstSummary(c.gcDesc, uint64(stats.NumGC), stats.PauseTotal.Seconds(), quantiles)
ch <- MustNewConstMetric(c.gcLastTimeDesc, GaugeValue, float64(stats.LastGC.UnixNano())/1e9)
ch <- MustNewConstMetric(c.goInfoDesc, GaugeValue, 1)
}
ms := &runtime.MemStats{}
runtime.ReadMemStats(ms)
for _, i := range c.metrics {
ch <- MustNewConstMetric(i.desc, i.valType, i.eval(ms))
}
func memstatNamespace(s string) string {
return "go_memstats_" + s
}
// memStatsMetrics provide description, value, and value type for memstat metrics.
// memStatsMetrics provide description, evaluator, runtime/metrics name, and
// value type for memstat metrics.
// TODO(bwplotka): Remove with end Go 1.16 EOL and replace with runtime/metrics.Description
type memStatsMetrics []struct {
desc *Desc
eval func(*runtime.MemStats) float64
......
// Copyright 2021 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//go:build !go1.17
// +build !go1.17
package prometheus
import (
"runtime"
"sync"
"time"
)
type goCollector struct {
base baseGoCollector
// ms... are memstats related.
msLast *runtime.MemStats // Previously collected memstats.
msLastTimestamp time.Time
msMtx sync.Mutex // Protects msLast and msLastTimestamp.
msMetrics memStatsMetrics
msRead func(*runtime.MemStats) // For mocking in tests.
msMaxWait time.Duration // Wait time for fresh memstats.
msMaxAge time.Duration // Maximum allowed age of old memstats.
}
// NewGoCollector is the obsolete version of collectors.NewGoCollector.
// See there for documentation.
//
// Deprecated: Use collectors.NewGoCollector instead.
func NewGoCollector() Collector {
msMetrics := goRuntimeMemStats()
msMetrics = append(msMetrics, struct {
desc *Desc
eval func(*runtime.MemStats) float64
valType ValueType
}{
// This metric is omitted in Go1.17+, see https://github.com/prometheus/client_golang/issues/842#issuecomment-861812034
desc: NewDesc(
memstatNamespace("gc_cpu_fraction"),
"The fraction of this program's available CPU time used by the GC since the program started.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return ms.GCCPUFraction },
valType: GaugeValue,
})
return &goCollector{
base: newBaseGoCollector(),
msLast: &runtime.MemStats{},
msRead: runtime.ReadMemStats,
msMaxWait: time.Second,
msMaxAge: 5 * time.Minute,
msMetrics: msMetrics,
}
}
// Describe returns all descriptions of the collector.
func (c *goCollector) Describe(ch chan<- *Desc) {
c.base.Describe(ch)
for _, i := range c.msMetrics {
ch <- i.desc
}
}
// Collect returns the current state of all metrics of the collector.
func (c *goCollector) Collect(ch chan<- Metric) {
var (
ms = &runtime.MemStats{}
done = make(chan struct{})
)
// Start reading memstats first as it might take a while.
go func() {
c.msRead(ms)
c.msMtx.Lock()
c.msLast = ms
c.msLastTimestamp = time.Now()
c.msMtx.Unlock()
close(done)
}()
// Collect base non-memory metrics.
c.base.Collect(ch)
timer := time.NewTimer(c.msMaxWait)
select {
case <-done: // Our own ReadMemStats succeeded in time. Use it.
timer.Stop() // Important for high collection frequencies to not pile up timers.
c.msCollect(ch, ms)
return
case <-timer.C: // Time out, use last memstats if possible. Continue below.
}
c.msMtx.Lock()
if time.Since(c.msLastTimestamp) < c.msMaxAge {
// Last memstats are recent enough. Collect from them under the lock.
c.msCollect(ch, c.msLast)
c.msMtx.Unlock()
return
}
// If we are here, the last memstats are too old or don't exist. We have
// to wait until our own ReadMemStats finally completes. For that to
// happen, we have to release the lock.
c.msMtx.Unlock()
<-done
c.msCollect(ch, ms)
}
func (c *goCollector) msCollect(ch chan<- Metric, ms *runtime.MemStats) {
for _, i := range c.msMetrics {
ch <- MustNewConstMetric(i.desc, i.valType, i.eval(ms))
}
}
// Copyright 2021 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//go:build go1.17
// +build go1.17
package prometheus
import (
"math"
"runtime"
"runtime/metrics"
"strings"
"sync"
//nolint:staticcheck // Ignore SA1019. Need to keep deprecated package for compatibility.
"github.com/golang/protobuf/proto"
dto "github.com/prometheus/client_model/go"
"github.com/prometheus/client_golang/prometheus/internal"
)
const (
goGCHeapTinyAllocsObjects = "/gc/heap/tiny/allocs:objects"
goGCHeapAllocsObjects = "/gc/heap/allocs:objects"
goGCHeapFreesObjects = "/gc/heap/frees:objects"
goGCHeapAllocsBytes = "/gc/heap/allocs:bytes"
goGCHeapObjects = "/gc/heap/objects:objects"
goGCHeapGoalBytes = "/gc/heap/goal:bytes"
goMemoryClassesTotalBytes = "/memory/classes/total:bytes"
goMemoryClassesHeapObjectsBytes = "/memory/classes/heap/objects:bytes"
goMemoryClassesHeapUnusedBytes = "/memory/classes/heap/unused:bytes"
goMemoryClassesHeapReleasedBytes = "/memory/classes/heap/released:bytes"
goMemoryClassesHeapFreeBytes = "/memory/classes/heap/free:bytes"
goMemoryClassesHeapStacksBytes = "/memory/classes/heap/stacks:bytes"
goMemoryClassesOSStacksBytes = "/memory/classes/os-stacks:bytes"
goMemoryClassesMetadataMSpanInuseBytes = "/memory/classes/metadata/mspan/inuse:bytes"
goMemoryClassesMetadataMSPanFreeBytes = "/memory/classes/metadata/mspan/free:bytes"
goMemoryClassesMetadataMCacheInuseBytes = "/memory/classes/metadata/mcache/inuse:bytes"
goMemoryClassesMetadataMCacheFreeBytes = "/memory/classes/metadata/mcache/free:bytes"
goMemoryClassesProfilingBucketsBytes = "/memory/classes/profiling/buckets:bytes"
goMemoryClassesMetadataOtherBytes = "/memory/classes/metadata/other:bytes"
goMemoryClassesOtherBytes = "/memory/classes/other:bytes"
)
// runtime/metrics names required for runtimeMemStats like logic.
var rmForMemStats = []string{goGCHeapTinyAllocsObjects,
goGCHeapAllocsObjects,
goGCHeapFreesObjects,
goGCHeapAllocsBytes,
goGCHeapObjects,
goGCHeapGoalBytes,
goMemoryClassesTotalBytes,
goMemoryClassesHeapObjectsBytes,
goMemoryClassesHeapUnusedBytes,
goMemoryClassesHeapReleasedBytes,
goMemoryClassesHeapFreeBytes,
goMemoryClassesHeapStacksBytes,
goMemoryClassesOSStacksBytes,
goMemoryClassesMetadataMSpanInuseBytes,
goMemoryClassesMetadataMSPanFreeBytes,
goMemoryClassesMetadataMCacheInuseBytes,
goMemoryClassesMetadataMCacheFreeBytes,
goMemoryClassesProfilingBucketsBytes,
goMemoryClassesMetadataOtherBytes,
goMemoryClassesOtherBytes,
}
func bestEffortLookupRM(lookup []string) []metrics.Description {
ret := make([]metrics.Description, 0, len(lookup))
for _, rm := range metrics.All() {
for _, m := range lookup {
if m == rm.Name {
ret = append(ret, rm)
}
}
}
return ret
}
type goCollector struct {
opt GoCollectorOptions
base baseGoCollector
// mu protects updates to all fields ensuring a consistent
// snapshot is always produced by Collect.
mu sync.Mutex
// rm... fields all pertain to the runtime/metrics package.
rmSampleBuf []metrics.Sample
rmSampleMap map[string]*metrics.Sample
rmMetrics []collectorMetric
// With Go 1.17, the runtime/metrics package was introduced.
// From that point on, metric names produced by the runtime/metrics
// package could be generated from runtime/metrics names. However,
// these differ from the old names for the same values.
//
// This field exist to export the same values under the old names
// as well.
msMetrics memStatsMetrics
}
const (
// Those are not exposed due to need to move Go collector to another package in v2.
// See issue https://github.com/prometheus/client_golang/issues/1030.
goRuntimeMemStatsCollection uint32 = 1 << iota
goRuntimeMetricsCollection
)
// GoCollectorOptions should not be used be directly by anything, except `collectors` package.
// Use it via collectors package instead. See issue
// https://github.com/prometheus/client_golang/issues/1030.
//
// Deprecated: Use collectors.WithGoCollections
type GoCollectorOptions struct {
// EnabledCollection sets what type of collections collector should expose on top of base collection.
// By default it's goMemStatsCollection | goRuntimeMetricsCollection.
EnabledCollections uint32
}
func (c GoCollectorOptions) isEnabled(flag uint32) bool {
return c.EnabledCollections&flag != 0
}
const defaultGoCollections = goRuntimeMemStatsCollection
// NewGoCollector is the obsolete version of collectors.NewGoCollector.
// See there for documentation.
//
// Deprecated: Use collectors.NewGoCollector instead.
func NewGoCollector(opts ...func(o *GoCollectorOptions)) Collector {
opt := GoCollectorOptions{EnabledCollections: defaultGoCollections}
for _, o := range opts {
o(&opt)
}
var descriptions []metrics.Description
if opt.isEnabled(goRuntimeMetricsCollection) {
descriptions = metrics.All()
} else if opt.isEnabled(goRuntimeMemStatsCollection) {
descriptions = bestEffortLookupRM(rmForMemStats)
}
// Collect all histogram samples so that we can get their buckets.
// The API guarantees that the buckets are always fixed for the lifetime
// of the process.
var histograms []metrics.Sample
for _, d := range descriptions {
if d.Kind == metrics.KindFloat64Histogram {
histograms = append(histograms, metrics.Sample{Name: d.Name})
}
}
if len(histograms) > 0 {
metrics.Read(histograms)
}
bucketsMap := make(map[string][]float64)
for i := range histograms {
bucketsMap[histograms[i].Name] = histograms[i].Value.Float64Histogram().Buckets
}
// Generate a Desc and ValueType for each runtime/metrics metric.
metricSet := make([]collectorMetric, 0, len(descriptions))
sampleBuf := make([]metrics.Sample, 0, len(descriptions))
sampleMap := make(map[string]*metrics.Sample, len(descriptions))
for i := range descriptions {
d := &descriptions[i]
namespace, subsystem, name, ok := internal.RuntimeMetricsToProm(d)
if !ok {
// Just ignore this metric; we can't do anything with it here.
// If a user decides to use the latest version of Go, we don't want
// to fail here. This condition is tested in TestExpectedRuntimeMetrics.
continue
}
// Set up sample buffer for reading, and a map
// for quick lookup of sample values.
sampleBuf = append(sampleBuf, metrics.Sample{Name: d.Name})
sampleMap[d.Name] = &sampleBuf[len(sampleBuf)-1]
var m collectorMetric
if d.Kind == metrics.KindFloat64Histogram {
_, hasSum := rmExactSumMap[d.Name]
unit := d.Name[strings.IndexRune(d.Name, ':')+1:]
m = newBatchHistogram(
NewDesc(
BuildFQName(namespace, subsystem, name),
d.Description,
nil,
nil,
),
internal.RuntimeMetricsBucketsForUnit(bucketsMap[d.Name], unit),
hasSum,
)
} else if d.Cumulative {
m = NewCounter(CounterOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: name,
Help: d.Description,
})
} else {
m = NewGauge(GaugeOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: name,
Help: d.Description,
})
}
metricSet = append(metricSet, m)
}
var msMetrics memStatsMetrics
if opt.isEnabled(goRuntimeMemStatsCollection) {
msMetrics = goRuntimeMemStats()
}
return &goCollector{
opt: opt,
base: newBaseGoCollector(),
rmSampleBuf: sampleBuf,
rmSampleMap: sampleMap,
rmMetrics: metricSet,
msMetrics: msMetrics,
}
}
// Describe returns all descriptions of the collector.
func (c *goCollector) Describe(ch chan<- *Desc) {
c.base.Describe(ch)
for _, i := range c.msMetrics {
ch <- i.desc
}
for _, m := range c.rmMetrics {
ch <- m.Desc()
}
}
// Collect returns the current state of all metrics of the collector.
func (c *goCollector) Collect(ch chan<- Metric) {
// Collect base non-memory metrics.
c.base.Collect(ch)
// Collect must be thread-safe, so prevent concurrent use of
// rmSampleBuf. Just read into rmSampleBuf but write all the data
// we get into our Metrics or MemStats.
//
// This lock also ensures that the Metrics we send out are all from
// the same updates, ensuring their mutual consistency insofar as
// is guaranteed by the runtime/metrics package.
//
// N.B. This locking is heavy-handed, but Collect is expected to be called
// relatively infrequently. Also the core operation here, metrics.Read,
// is fast (O(tens of microseconds)) so contention should certainly be
// low, though channel operations and any allocations may add to that.
c.mu.Lock()
defer c.mu.Unlock()
if len(c.rmSampleBuf) > 0 {
// Populate runtime/metrics sample buffer.
metrics.Read(c.rmSampleBuf)
}
if c.opt.isEnabled(goRuntimeMetricsCollection) {
// Collect all our metrics from rmSampleBuf.
for i, sample := range c.rmSampleBuf {
// N.B. switch on concrete type because it's significantly more efficient
// than checking for the Counter and Gauge interface implementations. In
// this case, we control all the types here.
switch m := c.rmMetrics[i].(type) {
case *counter:
// Guard against decreases. This should never happen, but a failure
// to do so will result in a panic, which is a harsh consequence for
// a metrics collection bug.
v0, v1 := m.get(), unwrapScalarRMValue(sample.Value)
if v1 > v0 {
m.Add(unwrapScalarRMValue(sample.Value) - m.get())
}
m.Collect(ch)
case *gauge:
m.Set(unwrapScalarRMValue(sample.Value))
m.Collect(ch)
case *batchHistogram:
m.update(sample.Value.Float64Histogram(), c.exactSumFor(sample.Name))
m.Collect(ch)
default:
panic("unexpected metric type")
}
}
}
// ms is a dummy MemStats that we populate ourselves so that we can
// populate the old metrics from it if goMemStatsCollection is enabled.
if c.opt.isEnabled(goRuntimeMemStatsCollection) {
var ms runtime.MemStats
memStatsFromRM(&ms, c.rmSampleMap)
for _, i := range c.msMetrics {
ch <- MustNewConstMetric(i.desc, i.valType, i.eval(&ms))
}
}
}
// unwrapScalarRMValue unwraps a runtime/metrics value that is assumed
// to be scalar and returns the equivalent float64 value. Panics if the
// value is not scalar.
func unwrapScalarRMValue(v metrics.Value) float64 {
switch v.Kind() {
case metrics.KindUint64:
return float64(v.Uint64())
case metrics.KindFloat64:
return v.Float64()
case metrics.KindBad:
// Unsupported metric.
//
// This should never happen because we always populate our metric
// set from the runtime/metrics package.
panic("unexpected unsupported metric")
default:
// Unsupported metric kind.
//
// This should never happen because we check for this during initialization
// and flag and filter metrics whose kinds we don't understand.
panic("unexpected unsupported metric kind")
}
}
var rmExactSumMap = map[string]string{
"/gc/heap/allocs-by-size:bytes": "/gc/heap/allocs:bytes",
"/gc/heap/frees-by-size:bytes": "/gc/heap/frees:bytes",
}
// exactSumFor takes a runtime/metrics metric name (that is assumed to
// be of kind KindFloat64Histogram) and returns its exact sum and whether
// its exact sum exists.
//
// The runtime/metrics API for histograms doesn't currently expose exact
// sums, but some of the other metrics are in fact exact sums of histograms.
func (c *goCollector) exactSumFor(rmName string) float64 {
sumName, ok := rmExactSumMap[rmName]
if !ok {
return 0
}
s, ok := c.rmSampleMap[sumName]
if !ok {
return 0
}
return unwrapScalarRMValue(s.Value)
}
func memStatsFromRM(ms *runtime.MemStats, rm map[string]*metrics.Sample) {
lookupOrZero := func(name string) uint64 {
if s, ok := rm[name]; ok {
return s.Value.Uint64()
}
return 0
}
// Currently, MemStats adds tiny alloc count to both Mallocs AND Frees.
// The reason for this is because MemStats couldn't be extended at the time
// but there was a desire to have Mallocs at least be a little more representative,
// while having Mallocs - Frees still represent a live object count.
// Unfortunately, MemStats doesn't actually export a large allocation count,
// so it's impossible to pull this number out directly.
tinyAllocs := lookupOrZero(goGCHeapTinyAllocsObjects)
ms.Mallocs = lookupOrZero(goGCHeapAllocsObjects) + tinyAllocs
ms.Frees = lookupOrZero(goGCHeapFreesObjects) + tinyAllocs
ms.TotalAlloc = lookupOrZero(goGCHeapAllocsBytes)
ms.Sys = lookupOrZero(goMemoryClassesTotalBytes)
ms.Lookups = 0 // Already always zero.
ms.HeapAlloc = lookupOrZero(goMemoryClassesHeapObjectsBytes)
ms.Alloc = ms.HeapAlloc
ms.HeapInuse = ms.HeapAlloc + lookupOrZero(goMemoryClassesHeapUnusedBytes)
ms.HeapReleased = lookupOrZero(goMemoryClassesHeapReleasedBytes)
ms.HeapIdle = ms.HeapReleased + lookupOrZero(goMemoryClassesHeapFreeBytes)
ms.HeapSys = ms.HeapInuse + ms.HeapIdle
ms.HeapObjects = lookupOrZero(goGCHeapObjects)
ms.StackInuse = lookupOrZero(goMemoryClassesHeapStacksBytes)
ms.StackSys = ms.StackInuse + lookupOrZero(goMemoryClassesOSStacksBytes)
ms.MSpanInuse = lookupOrZero(goMemoryClassesMetadataMSpanInuseBytes)
ms.MSpanSys = ms.MSpanInuse + lookupOrZero(goMemoryClassesMetadataMSPanFreeBytes)
ms.MCacheInuse = lookupOrZero(goMemoryClassesMetadataMCacheInuseBytes)
ms.MCacheSys = ms.MCacheInuse + lookupOrZero(goMemoryClassesMetadataMCacheFreeBytes)
ms.BuckHashSys = lookupOrZero(goMemoryClassesProfilingBucketsBytes)
ms.GCSys = lookupOrZero(goMemoryClassesMetadataOtherBytes)
ms.OtherSys = lookupOrZero(goMemoryClassesOtherBytes)
ms.NextGC = lookupOrZero(goGCHeapGoalBytes)
// N.B. GCCPUFraction is intentionally omitted. This metric is not useful,
// and often misleading due to the fact that it's an average over the lifetime
// of the process.
// See https://github.com/prometheus/client_golang/issues/842#issuecomment-861812034
// for more details.
ms.GCCPUFraction = 0
}
// batchHistogram is a mutable histogram that is updated
// in batches.
type batchHistogram struct {
selfCollector
// Static fields updated only once.
desc *Desc
hasSum bool
// Because this histogram operates in batches, it just uses a
// single mutex for everything. updates are always serialized
// but Write calls may operate concurrently with updates.
// Contention between these two sources should be rare.
mu sync.Mutex
buckets []float64 // Inclusive lower bounds, like runtime/metrics.
counts []uint64
sum float64 // Used if hasSum is true.
}
// newBatchHistogram creates a new batch histogram value with the given
// Desc, buckets, and whether or not it has an exact sum available.
//
// buckets must always be from the runtime/metrics package, following
// the same conventions.
func newBatchHistogram(desc *Desc, buckets []float64, hasSum bool) *batchHistogram {
// We need to remove -Inf values. runtime/metrics keeps them around.
// But -Inf bucket should not be allowed for prometheus histograms.
if buckets[0] == math.Inf(-1) {
buckets = buckets[1:]
}
h := &batchHistogram{
desc: desc,
buckets: buckets,
// Because buckets follows runtime/metrics conventions, there's
// 1 more value in the buckets list than there are buckets represented,
// because in runtime/metrics, the bucket values represent *boundaries*,
// and non-Inf boundaries are inclusive lower bounds for that bucket.
counts: make([]uint64, len(buckets)-1),
hasSum: hasSum,
}
h.init(h)
return h
}
// update updates the batchHistogram from a runtime/metrics histogram.
//
// sum must be provided if the batchHistogram was created to have an exact sum.
// h.buckets must be a strict subset of his.Buckets.
func (h *batchHistogram) update(his *metrics.Float64Histogram, sum float64) {
counts, buckets := his.Counts, his.Buckets
h.mu.Lock()
defer h.mu.Unlock()
// Clear buckets.
for i := range h.counts {
h.counts[i] = 0
}
// Copy and reduce buckets.
var j int
for i, count := range counts {
h.counts[j] += count
if buckets[i+1] == h.buckets[j+1] {
j++
}
}
if h.hasSum {
h.sum = sum
}
}
func (h *batchHistogram) Desc() *Desc {
return h.desc
}
func (h *batchHistogram) Write(out *dto.Metric) error {
h.mu.Lock()
defer h.mu.Unlock()
sum := float64(0)
if h.hasSum {
sum = h.sum
}
dtoBuckets := make([]*dto.Bucket, 0, len(h.counts))
totalCount := uint64(0)
for i, count := range h.counts {
totalCount += count
if !h.hasSum {
if count != 0 {
// N.B. This computed sum is an underestimate.
sum += h.buckets[i] * float64(count)
}
}
// Skip the +Inf bucket, but only for the bucket list.
// It must still count for sum and totalCount.
if math.IsInf(h.buckets[i+1], 1) {
break
}
// Float64Histogram's upper bound is exclusive, so make it inclusive
// by obtaining the next float64 value down, in order.
upperBound := math.Nextafter(h.buckets[i+1], h.buckets[i])
dtoBuckets = append(dtoBuckets, &dto.Bucket{
CumulativeCount: proto.Uint64(totalCount),
UpperBound: proto.Float64(upperBound),
})
}
out.Histogram = &dto.Histogram{
Bucket: dtoBuckets,
SampleCount: proto.Uint64(totalCount),
SampleSum: proto.Float64(sum),
}
return nil
}
......@@ -20,7 +20,9 @@ import (
"sort"
"sync"
"sync/atomic"
"time"
//nolint:staticcheck // Ignore SA1019. Need to keep deprecated package for compatibility.
"github.com/golang/protobuf/proto"
dto "github.com/prometheus/client_model/go"
......@@ -45,7 +47,12 @@ type Histogram interface {
Metric
Collector
// Observe adds a single observation to the histogram.
// Observe adds a single observation to the histogram. Observations are
// usually positive or zero. Negative observations are accepted but
// prevent current versions of Prometheus from properly detecting
// counter resets in the sum of observations. See
// https://prometheus.io/docs/practices/histograms/#count-and-sum-of-observations
// for details.
Observe(float64)
}
......@@ -109,6 +116,34 @@ func ExponentialBuckets(start, factor float64, count int) []float64 {
return buckets
}
// ExponentialBucketsRange creates 'count' buckets, where the lowest bucket is
// 'min' and the highest bucket is 'max'. The final +Inf bucket is not counted
// and not included in the returned slice. The returned slice is meant to be
// used for the Buckets field of HistogramOpts.
//
// The function panics if 'count' is 0 or negative, if 'min' is 0 or negative.
func ExponentialBucketsRange(min, max float64, count int) []float64 {
if count < 1 {
panic("ExponentialBucketsRange count needs a positive count")
}
if min <= 0 {
panic("ExponentialBucketsRange min needs to be greater than 0")
}
// Formula for exponential buckets.
// max = min*growthFactor^(bucketCount-1)
// We know max/min and highest bucket. Solve for growthFactor.
growthFactor := math.Pow(max/min, 1.0/float64(count-1))
// Now that we know growthFactor, solve for each bucket.
buckets := make([]float64, count)
for i := 1; i <= count; i++ {
buckets[i-1] = min * math.Pow(growthFactor, float64(i-1))
}
return buckets
}
// HistogramOpts bundles the options for creating a Histogram metric. It is
// mandatory to set Name to a non-empty string. All other fields are optional
// and can safely be left at their zero value, although it is strongly
......@@ -138,7 +173,7 @@ type HistogramOpts struct {
// better covered by target labels set by the scraping Prometheus
// server, or by one specific metric (e.g. a build_info or a
// machine_role metric). See also
// https://prometheus.io/docs/instrumenting/writing_exporters/#target-labels,-not-static-scraped-labels
// https://prometheus.io/docs/instrumenting/writing_exporters/#target-labels-not-static-scraped-labels
ConstLabels Labels
// Buckets defines the buckets into which observations are counted. Each
......@@ -151,6 +186,10 @@ type HistogramOpts struct {
// NewHistogram creates a new Histogram based on the provided HistogramOpts. It
// panics if the buckets in HistogramOpts are not in strictly increasing order.
//
// The returned implementation also implements ExemplarObserver. It is safe to
// perform the corresponding type assertion. Exemplars are tracked separately
// for each bucket.
func NewHistogram(opts HistogramOpts) Histogram {
return newHistogram(
NewDesc(
......@@ -186,8 +225,9 @@ func newHistogram(desc *Desc, opts HistogramOpts, labelValues ...string) Histogr
h := &histogram{
desc: desc,
upperBounds: opts.Buckets,
labelPairs: makeLabelPairs(desc, labelValues),
counts: [2]*histogramCounts{&histogramCounts{}, &histogramCounts{}},
labelPairs: MakeLabelPairs(desc, labelValues),
counts: [2]*histogramCounts{{}, {}},
now: time.Now,
}
for i, upperBound := range h.upperBounds {
if i < len(h.upperBounds)-1 {
......@@ -204,10 +244,11 @@ func newHistogram(desc *Desc, opts HistogramOpts, labelValues ...string) Histogr
}
}
}
// Finally we know the final length of h.upperBounds and can make counts
// for both states:
// Finally we know the final length of h.upperBounds and can make buckets
// for both counts as well as exemplars:
h.counts[0].buckets = make([]uint64, len(h.upperBounds))
h.counts[1].buckets = make([]uint64, len(h.upperBounds))
h.exemplars = make([]atomic.Value, len(h.upperBounds)+1)
h.init(h) // Init self-collection.
return h
......@@ -224,18 +265,21 @@ type histogramCounts struct {
}
type histogram struct {
// countAndHotIdx is a complicated one. For lock-free yet atomic
// observations, we need to save the total count of observations again,
// combined with the index of the currently-hot counts struct, so that
// we can perform the operation on both values atomically. The least
// significant bit defines the hot counts struct. The remaining 63 bits
// represent the total count of observations. This happens under the
// assumption that the 63bit count will never overflow. Rationale: An
// observations takes about 30ns. Let's assume it could happen in
// 10ns. Overflowing the counter will then take at least (2^63)*10ns,
// which is about 3000 years.
// countAndHotIdx enables lock-free writes with use of atomic updates.
// The most significant bit is the hot index [0 or 1] of the count field
// below. Observe calls update the hot one. All remaining bits count the
// number of Observe calls. Observe starts by incrementing this counter,
// and finish by incrementing the count field in the respective
// histogramCounts, as a marker for completion.
//
// This has to be first in the struct for 64bit alignment. See
// Calls of the Write method (which are non-mutating reads from the
// perspective of the histogram) swap the hot–cold under the writeMtx
// lock. A cooldown is awaited (while locked) by comparing the number of
// observations with the initiation count. Once they match, then the
// last observation on the now cool one has completed. All cool fields must
// be merged into the new hot before releasing writeMtx.
//
// Fields with atomic access first! See alignment constraint:
// http://golang.org/pkg/sync/atomic/#pkg-note-BUG
countAndHotIdx uint64
......@@ -243,16 +287,17 @@ type histogram struct {
desc *Desc
writeMtx sync.Mutex // Only used in the Write method.
upperBounds []float64
// Two counts, one is "hot" for lock-free observations, the other is
// "cold" for writing out a dto.Metric. It has to be an array of
// pointers to guarantee 64bit alignment of the histogramCounts, see
// http://golang.org/pkg/sync/atomic/#pkg-note-BUG.
counts [2]*histogramCounts
hotIdx int // Index of currently-hot counts. Only used within Write.
labelPairs []*dto.LabelPair
upperBounds []float64
labelPairs []*dto.LabelPair
exemplars []atomic.Value // One more than buckets (to include +Inf), each a *dto.Exemplar.
now func() time.Time // To mock out time.Now() for testing.
}
func (h *histogram) Desc() *Desc {
......@@ -260,105 +305,65 @@ func (h *histogram) Desc() *Desc {
}
func (h *histogram) Observe(v float64) {
// TODO(beorn7): For small numbers of buckets (<30), a linear search is
// slightly faster than the binary search. If we really care, we could
// switch from one search strategy to the other depending on the number
// of buckets.
//
// Microbenchmarks (BenchmarkHistogramNoLabels):
// 11 buckets: 38.3 ns/op linear - binary 48.7 ns/op
// 100 buckets: 78.1 ns/op linear - binary 54.9 ns/op
// 300 buckets: 154 ns/op linear - binary 61.6 ns/op
i := sort.SearchFloat64s(h.upperBounds, v)
// We increment h.countAndHotIdx by 2 so that the counter in the upper
// 63 bits gets incremented by 1. At the same time, we get the new value
// back, which we can use to find the currently-hot counts.
n := atomic.AddUint64(&h.countAndHotIdx, 2)
hotCounts := h.counts[n%2]
h.observe(v, h.findBucket(v))
}
if i < len(h.upperBounds) {
atomic.AddUint64(&hotCounts.buckets[i], 1)
}
for {
oldBits := atomic.LoadUint64(&hotCounts.sumBits)
newBits := math.Float64bits(math.Float64frombits(oldBits) + v)
if atomic.CompareAndSwapUint64(&hotCounts.sumBits, oldBits, newBits) {
break
}
}
// Increment count last as we take it as a signal that the observation
// is complete.
atomic.AddUint64(&hotCounts.count, 1)
func (h *histogram) ObserveWithExemplar(v float64, e Labels) {
i := h.findBucket(v)
h.observe(v, i)
h.updateExemplar(v, i, e)
}
func (h *histogram) Write(out *dto.Metric) error {
var (
his = &dto.Histogram{}
buckets = make([]*dto.Bucket, len(h.upperBounds))
hotCounts, coldCounts *histogramCounts
count uint64
)
// For simplicity, we mutex the rest of this method. It is not in the
// hot path, i.e. Observe is called much more often than Write. The
// complication of making Write lock-free isn't worth it.
// For simplicity, we protect this whole method by a mutex. It is not in
// the hot path, i.e. Observe is called much more often than Write. The
// complication of making Write lock-free isn't worth it, if possible at
// all.
h.writeMtx.Lock()
defer h.writeMtx.Unlock()
// This is a bit arcane, which is why the following spells out this if
// clause in English:
//
// If the currently-hot counts struct is #0, we atomically increment
// h.countAndHotIdx by 1 so that from now on Observe will use the counts
// struct #1. Furthermore, the atomic increment gives us the new value,
// which, in its most significant 63 bits, tells us the count of
// observations done so far up to and including currently ongoing
// observations still using the counts struct just changed from hot to
// cold. To have a normal uint64 for the count, we bitshift by 1 and
// save the result in count. We also set h.hotIdx to 1 for the next
// Write call, and we will refer to counts #1 as hotCounts and to counts
// #0 as coldCounts.
//
// If the currently-hot counts struct is #1, we do the corresponding
// things the other way round. We have to _decrement_ h.countAndHotIdx
// (which is a bit arcane in itself, as we have to express -1 with an
// unsigned int...).
if h.hotIdx == 0 {
count = atomic.AddUint64(&h.countAndHotIdx, 1) >> 1
h.hotIdx = 1
hotCounts = h.counts[1]
coldCounts = h.counts[0]
} else {
count = atomic.AddUint64(&h.countAndHotIdx, ^uint64(0)) >> 1 // Decrement.
h.hotIdx = 0
hotCounts = h.counts[0]
coldCounts = h.counts[1]
}
// Now we have to wait for the now-declared-cold counts to actually cool
// down, i.e. wait for all observations still using it to finish. That's
// the case once the count in the cold counts struct is the same as the
// one atomically retrieved from the upper 63bits of h.countAndHotIdx.
for {
if count == atomic.LoadUint64(&coldCounts.count) {
break
}
// Adding 1<<63 switches the hot index (from 0 to 1 or from 1 to 0)
// without touching the count bits. See the struct comments for a full
// description of the algorithm.
n := atomic.AddUint64(&h.countAndHotIdx, 1<<63)
// count is contained unchanged in the lower 63 bits.
count := n & ((1 << 63) - 1)
// The most significant bit tells us which counts is hot. The complement
// is thus the cold one.
hotCounts := h.counts[n>>63]
coldCounts := h.counts[(^n)>>63]
// Await cooldown.
for count != atomic.LoadUint64(&coldCounts.count) {
runtime.Gosched() // Let observations get work done.
}
his.SampleCount = proto.Uint64(count)
his.SampleSum = proto.Float64(math.Float64frombits(atomic.LoadUint64(&coldCounts.sumBits)))
his := &dto.Histogram{
Bucket: make([]*dto.Bucket, len(h.upperBounds)),
SampleCount: proto.Uint64(count),
SampleSum: proto.Float64(math.Float64frombits(atomic.LoadUint64(&coldCounts.sumBits))),
}
var cumCount uint64
for i, upperBound := range h.upperBounds {
cumCount += atomic.LoadUint64(&coldCounts.buckets[i])
buckets[i] = &dto.Bucket{
his.Bucket[i] = &dto.Bucket{
CumulativeCount: proto.Uint64(cumCount),
UpperBound: proto.Float64(upperBound),
}
if e := h.exemplars[i].Load(); e != nil {
his.Bucket[i].Exemplar = e.(*dto.Exemplar)
}
}
// If there is an exemplar for the +Inf bucket, we have to add that bucket explicitly.
if e := h.exemplars[len(h.upperBounds)].Load(); e != nil {
b := &dto.Bucket{
CumulativeCount: proto.Uint64(count),
UpperBound: proto.Float64(math.Inf(1)),
Exemplar: e.(*dto.Exemplar),
}
his.Bucket = append(his.Bucket, b)
}
his.Bucket = buckets
out.Histogram = his
out.Label = h.labelPairs
......@@ -380,13 +385,64 @@ func (h *histogram) Write(out *dto.Metric) error {
return nil
}
// findBucket returns the index of the bucket for the provided value, or
// len(h.upperBounds) for the +Inf bucket.
func (h *histogram) findBucket(v float64) int {
// TODO(beorn7): For small numbers of buckets (<30), a linear search is
// slightly faster than the binary search. If we really care, we could
// switch from one search strategy to the other depending on the number
// of buckets.
//
// Microbenchmarks (BenchmarkHistogramNoLabels):
// 11 buckets: 38.3 ns/op linear - binary 48.7 ns/op
// 100 buckets: 78.1 ns/op linear - binary 54.9 ns/op
// 300 buckets: 154 ns/op linear - binary 61.6 ns/op
return sort.SearchFloat64s(h.upperBounds, v)
}
// observe is the implementation for Observe without the findBucket part.
func (h *histogram) observe(v float64, bucket int) {
// We increment h.countAndHotIdx so that the counter in the lower
// 63 bits gets incremented. At the same time, we get the new value
// back, which we can use to find the currently-hot counts.
n := atomic.AddUint64(&h.countAndHotIdx, 1)
hotCounts := h.counts[n>>63]
if bucket < len(h.upperBounds) {
atomic.AddUint64(&hotCounts.buckets[bucket], 1)
}
for {
oldBits := atomic.LoadUint64(&hotCounts.sumBits)
newBits := math.Float64bits(math.Float64frombits(oldBits) + v)
if atomic.CompareAndSwapUint64(&hotCounts.sumBits, oldBits, newBits) {
break
}
}
// Increment count last as we take it as a signal that the observation
// is complete.
atomic.AddUint64(&hotCounts.count, 1)
}
// updateExemplar replaces the exemplar for the provided bucket. With empty
// labels, it's a no-op. It panics if any of the labels is invalid.
func (h *histogram) updateExemplar(v float64, bucket int, l Labels) {
if l == nil {
return
}
e, err := newExemplar(v, h.now(), l)
if err != nil {
panic(err)
}
h.exemplars[bucket].Store(e)
}
// HistogramVec is a Collector that bundles a set of Histograms that all share the
// same Desc, but have different values for their variable labels. This is used
// if you want to count the same thing partitioned by various dimensions
// (e.g. HTTP request latencies, partitioned by status code and method). Create
// instances with NewHistogramVec.
type HistogramVec struct {
*metricVec
*MetricVec
}
// NewHistogramVec creates a new HistogramVec based on the provided HistogramOpts and
......@@ -399,14 +455,14 @@ func NewHistogramVec(opts HistogramOpts, labelNames []string) *HistogramVec {
opts.ConstLabels,
)
return &HistogramVec{
metricVec: newMetricVec(desc, func(lvs ...string) Metric {
MetricVec: NewMetricVec(desc, func(lvs ...string) Metric {
return newHistogram(desc, opts, lvs...)
}),
}
}
// GetMetricWithLabelValues returns the Histogram for the given slice of label
// values (same order as the VariableLabels in Desc). If that combination of
// values (same order as the variable labels in Desc). If that combination of
// label values is accessed for the first time, a new Histogram is created.
//
// It is possible to call this method without using the returned Histogram to only
......@@ -421,7 +477,7 @@ func NewHistogramVec(opts HistogramOpts, labelNames []string) *HistogramVec {
// example.
//
// An error is returned if the number of label values is not the same as the
// number of VariableLabels in Desc (minus any curried labels).
// number of variable labels in Desc (minus any curried labels).
//
// Note that for more than one label value, this method is prone to mistakes
// caused by an incorrect order of arguments. Consider GetMetricWith(Labels) as
......@@ -430,7 +486,7 @@ func NewHistogramVec(opts HistogramOpts, labelNames []string) *HistogramVec {
// with a performance overhead (for creating and processing the Labels map).
// See also the GaugeVec example.
func (v *HistogramVec) GetMetricWithLabelValues(lvs ...string) (Observer, error) {
metric, err := v.metricVec.getMetricWithLabelValues(lvs...)
metric, err := v.MetricVec.GetMetricWithLabelValues(lvs...)
if metric != nil {
return metric.(Observer), err
}
......@@ -438,19 +494,19 @@ func (v *HistogramVec) GetMetricWithLabelValues(lvs ...string) (Observer, error)
}
// GetMetricWith returns the Histogram for the given Labels map (the label names
// must match those of the VariableLabels in Desc). If that label map is
// must match those of the variable labels in Desc). If that label map is
// accessed for the first time, a new Histogram is created. Implications of
// creating a Histogram without using it and keeping the Histogram for later use
// are the same as for GetMetricWithLabelValues.
//
// An error is returned if the number and names of the Labels are inconsistent
// with those of the VariableLabels in Desc (minus any curried labels).
// with those of the variable labels in Desc (minus any curried labels).
//
// This method is used for the same purpose as
// GetMetricWithLabelValues(...string). See there for pros and cons of the two
// methods.
func (v *HistogramVec) GetMetricWith(labels Labels) (Observer, error) {
metric, err := v.metricVec.getMetricWith(labels)
metric, err := v.MetricVec.GetMetricWith(labels)
if metric != nil {
return metric.(Observer), err
}
......@@ -494,7 +550,7 @@ func (v *HistogramVec) With(labels Labels) Observer {
// registered with a given registry (usually the uncurried version). The Reset
// method deletes all metrics, even if called on a curried vector.
func (v *HistogramVec) CurryWith(labels Labels) (ObserverVec, error) {
vec, err := v.curryWith(labels)
vec, err := v.MetricVec.CurryWith(labels)
if vec != nil {
return &HistogramVec{vec}, err
}
......@@ -579,12 +635,12 @@ func NewConstHistogram(
count: count,
sum: sum,
buckets: buckets,
labelPairs: makeLabelPairs(desc, labelValues),
labelPairs: MakeLabelPairs(desc, labelValues),
}, nil
}
// MustNewConstHistogram is a version of NewConstHistogram that panics where
// NewConstMetric would have returned an error.
// NewConstHistogram would have returned an error.
func MustNewConstHistogram(
desc *Desc,
count uint64,
......
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import (
"bufio"
"compress/gzip"
"io"
"net"
"net/http"
"strconv"
"strings"
"sync"
"time"
"github.com/prometheus/common/expfmt"
)
// TODO(beorn7): Remove this whole file. It is a partial mirror of
// promhttp/http.go (to avoid circular import chains) where everything HTTP
// related should live. The functions here are just for avoiding
// breakage. Everything is deprecated.
const (
contentTypeHeader = "Content-Type"
contentLengthHeader = "Content-Length"
contentEncodingHeader = "Content-Encoding"
acceptEncodingHeader = "Accept-Encoding"
)
var gzipPool = sync.Pool{
New: func() interface{} {
return gzip.NewWriter(nil)
},
}
// Handler returns an HTTP handler for the DefaultGatherer. It is
// already instrumented with InstrumentHandler (using "prometheus" as handler
// name).
//
// Deprecated: Please note the issues described in the doc comment of
// InstrumentHandler. You might want to consider using promhttp.Handler instead.
func Handler() http.Handler {
return InstrumentHandler("prometheus", UninstrumentedHandler())
}
// UninstrumentedHandler returns an HTTP handler for the DefaultGatherer.
//
// Deprecated: Use promhttp.HandlerFor(DefaultGatherer, promhttp.HandlerOpts{})
// instead. See there for further documentation.
func UninstrumentedHandler() http.Handler {
return http.HandlerFunc(func(rsp http.ResponseWriter, req *http.Request) {
mfs, err := DefaultGatherer.Gather()
if err != nil {
httpError(rsp, err)
return
}
contentType := expfmt.Negotiate(req.Header)
header := rsp.Header()
header.Set(contentTypeHeader, string(contentType))
w := io.Writer(rsp)
if gzipAccepted(req.Header) {
header.Set(contentEncodingHeader, "gzip")
gz := gzipPool.Get().(*gzip.Writer)
defer gzipPool.Put(gz)
gz.Reset(w)
defer gz.Close()
w = gz
}
enc := expfmt.NewEncoder(w, contentType)
for _, mf := range mfs {
if err := enc.Encode(mf); err != nil {
httpError(rsp, err)
return
}
}
})
}
var instLabels = []string{"method", "code"}
type nower interface {
Now() time.Time
}
type nowFunc func() time.Time
func (n nowFunc) Now() time.Time {
return n()
}
var now nower = nowFunc(func() time.Time {
return time.Now()
})
// InstrumentHandler wraps the given HTTP handler for instrumentation. It
// registers four metric collectors (if not already done) and reports HTTP
// metrics to the (newly or already) registered collectors: http_requests_total
// (CounterVec), http_request_duration_microseconds (Summary),
// http_request_size_bytes (Summary), http_response_size_bytes (Summary). Each
// has a constant label named "handler" with the provided handlerName as
// value. http_requests_total is a metric vector partitioned by HTTP method
// (label name "method") and HTTP status code (label name "code").
//
// Deprecated: InstrumentHandler has several issues. Use the tooling provided in
// package promhttp instead. The issues are the following: (1) It uses Summaries
// rather than Histograms. Summaries are not useful if aggregation across
// multiple instances is required. (2) It uses microseconds as unit, which is
// deprecated and should be replaced by seconds. (3) The size of the request is
// calculated in a separate goroutine. Since this calculator requires access to
// the request header, it creates a race with any writes to the header performed
// during request handling. httputil.ReverseProxy is a prominent example for a
// handler performing such writes. (4) It has additional issues with HTTP/2, cf.
// https://github.com/prometheus/client_golang/issues/272.
func InstrumentHandler(handlerName string, handler http.Handler) http.HandlerFunc {
return InstrumentHandlerFunc(handlerName, handler.ServeHTTP)
}
// InstrumentHandlerFunc wraps the given function for instrumentation. It
// otherwise works in the same way as InstrumentHandler (and shares the same
// issues).
//
// Deprecated: InstrumentHandlerFunc is deprecated for the same reasons as
// InstrumentHandler is. Use the tooling provided in package promhttp instead.
func InstrumentHandlerFunc(handlerName string, handlerFunc func(http.ResponseWriter, *http.Request)) http.HandlerFunc {
return InstrumentHandlerFuncWithOpts(
SummaryOpts{
Subsystem: "http",
ConstLabels: Labels{"handler": handlerName},
Objectives: map[float64]float64{0.5: 0.05, 0.9: 0.01, 0.99: 0.001},
},
handlerFunc,
)
}
// InstrumentHandlerWithOpts works like InstrumentHandler (and shares the same
// issues) but provides more flexibility (at the cost of a more complex call
// syntax). As InstrumentHandler, this function registers four metric
// collectors, but it uses the provided SummaryOpts to create them. However, the
// fields "Name" and "Help" in the SummaryOpts are ignored. "Name" is replaced
// by "requests_total", "request_duration_microseconds", "request_size_bytes",
// and "response_size_bytes", respectively. "Help" is replaced by an appropriate
// help string. The names of the variable labels of the http_requests_total
// CounterVec are "method" (get, post, etc.), and "code" (HTTP status code).
//
// If InstrumentHandlerWithOpts is called as follows, it mimics exactly the
// behavior of InstrumentHandler:
//
// prometheus.InstrumentHandlerWithOpts(
// prometheus.SummaryOpts{
// Subsystem: "http",
// ConstLabels: prometheus.Labels{"handler": handlerName},
// },
// handler,
// )
//
// Technical detail: "requests_total" is a CounterVec, not a SummaryVec, so it
// cannot use SummaryOpts. Instead, a CounterOpts struct is created internally,
// and all its fields are set to the equally named fields in the provided
// SummaryOpts.
//
// Deprecated: InstrumentHandlerWithOpts is deprecated for the same reasons as
// InstrumentHandler is. Use the tooling provided in package promhttp instead.
func InstrumentHandlerWithOpts(opts SummaryOpts, handler http.Handler) http.HandlerFunc {
return InstrumentHandlerFuncWithOpts(opts, handler.ServeHTTP)
}
// InstrumentHandlerFuncWithOpts works like InstrumentHandlerFunc (and shares
// the same issues) but provides more flexibility (at the cost of a more complex
// call syntax). See InstrumentHandlerWithOpts for details how the provided
// SummaryOpts are used.
//
// Deprecated: InstrumentHandlerFuncWithOpts is deprecated for the same reasons
// as InstrumentHandler is. Use the tooling provided in package promhttp instead.
func InstrumentHandlerFuncWithOpts(opts SummaryOpts, handlerFunc func(http.ResponseWriter, *http.Request)) http.HandlerFunc {
reqCnt := NewCounterVec(
CounterOpts{
Namespace: opts.Namespace,
Subsystem: opts.Subsystem,
Name: "requests_total",
Help: "Total number of HTTP requests made.",
ConstLabels: opts.ConstLabels,
},
instLabels,
)
if err := Register(reqCnt); err != nil {
if are, ok := err.(AlreadyRegisteredError); ok {
reqCnt = are.ExistingCollector.(*CounterVec)
} else {
panic(err)
}
}
opts.Name = "request_duration_microseconds"
opts.Help = "The HTTP request latencies in microseconds."
reqDur := NewSummary(opts)
if err := Register(reqDur); err != nil {
if are, ok := err.(AlreadyRegisteredError); ok {
reqDur = are.ExistingCollector.(Summary)
} else {
panic(err)
}
}
opts.Name = "request_size_bytes"
opts.Help = "The HTTP request sizes in bytes."
reqSz := NewSummary(opts)
if err := Register(reqSz); err != nil {
if are, ok := err.(AlreadyRegisteredError); ok {
reqSz = are.ExistingCollector.(Summary)
} else {
panic(err)
}
}
opts.Name = "response_size_bytes"
opts.Help = "The HTTP response sizes in bytes."
resSz := NewSummary(opts)
if err := Register(resSz); err != nil {
if are, ok := err.(AlreadyRegisteredError); ok {
resSz = are.ExistingCollector.(Summary)
} else {
panic(err)
}
}
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
now := time.Now()
delegate := &responseWriterDelegator{ResponseWriter: w}
out := computeApproximateRequestSize(r)
_, cn := w.(http.CloseNotifier)
_, fl := w.(http.Flusher)
_, hj := w.(http.Hijacker)
_, rf := w.(io.ReaderFrom)
var rw http.ResponseWriter
if cn && fl && hj && rf {
rw = &fancyResponseWriterDelegator{delegate}
} else {
rw = delegate
}
handlerFunc(rw, r)
elapsed := float64(time.Since(now)) / float64(time.Microsecond)
method := sanitizeMethod(r.Method)
code := sanitizeCode(delegate.status)
reqCnt.WithLabelValues(method, code).Inc()
reqDur.Observe(elapsed)
resSz.Observe(float64(delegate.written))
reqSz.Observe(float64(<-out))
})
}
func computeApproximateRequestSize(r *http.Request) <-chan int {
// Get URL length in current goroutine for avoiding a race condition.
// HandlerFunc that runs in parallel may modify the URL.
s := 0
if r.URL != nil {
s += len(r.URL.String())
}
out := make(chan int, 1)
go func() {
s += len(r.Method)
s += len(r.Proto)
for name, values := range r.Header {
s += len(name)
for _, value := range values {
s += len(value)
}
}
s += len(r.Host)
// N.B. r.Form and r.MultipartForm are assumed to be included in r.URL.
if r.ContentLength != -1 {
s += int(r.ContentLength)
}
out <- s
close(out)
}()
return out
}
type responseWriterDelegator struct {
http.ResponseWriter
status int
written int64
wroteHeader bool
}
func (r *responseWriterDelegator) WriteHeader(code int) {
r.status = code
r.wroteHeader = true
r.ResponseWriter.WriteHeader(code)
}
func (r *responseWriterDelegator) Write(b []byte) (int, error) {
if !r.wroteHeader {
r.WriteHeader(http.StatusOK)
}
n, err := r.ResponseWriter.Write(b)
r.written += int64(n)
return n, err
}
type fancyResponseWriterDelegator struct {
*responseWriterDelegator
}
func (f *fancyResponseWriterDelegator) CloseNotify() <-chan bool {
return f.ResponseWriter.(http.CloseNotifier).CloseNotify()
}
func (f *fancyResponseWriterDelegator) Flush() {
f.ResponseWriter.(http.Flusher).Flush()
}
func (f *fancyResponseWriterDelegator) Hijack() (net.Conn, *bufio.ReadWriter, error) {
return f.ResponseWriter.(http.Hijacker).Hijack()
}
func (f *fancyResponseWriterDelegator) ReadFrom(r io.Reader) (int64, error) {
if !f.wroteHeader {
f.WriteHeader(http.StatusOK)
}
n, err := f.ResponseWriter.(io.ReaderFrom).ReadFrom(r)
f.written += n
return n, err
}
func sanitizeMethod(m string) string {
switch m {
case "GET", "get":
return "get"
case "PUT", "put":
return "put"
case "HEAD", "head":
return "head"
case "POST", "post":
return "post"
case "DELETE", "delete":
return "delete"
case "CONNECT", "connect":
return "connect"
case "OPTIONS", "options":
return "options"
case "NOTIFY", "notify":
return "notify"
default:
return strings.ToLower(m)
}
}
func sanitizeCode(s int) string {
switch s {
case 100:
return "100"
case 101:
return "101"
case 200:
return "200"
case 201:
return "201"
case 202:
return "202"
case 203:
return "203"
case 204:
return "204"
case 205:
return "205"
case 206:
return "206"
case 300:
return "300"
case 301:
return "301"
case 302:
return "302"
case 304:
return "304"
case 305:
return "305"
case 307:
return "307"
case 400:
return "400"
case 401:
return "401"
case 402:
return "402"
case 403:
return "403"
case 404:
return "404"
case 405:
return "405"
case 406:
return "406"
case 407:
return "407"
case 408:
return "408"
case 409:
return "409"
case 410:
return "410"
case 411:
return "411"
case 412:
return "412"
case 413:
return "413"
case 414:
return "414"
case 415:
return "415"
case 416:
return "416"
case 417:
return "417"
case 418:
return "418"
case 500:
return "500"
case 501:
return "501"
case 502:
return "502"
case 503:
return "503"
case 504:
return "504"
case 505:
return "505"
case 428:
return "428"
case 429:
return "429"
case 431:
return "431"
case 511:
return "511"
default:
return strconv.Itoa(s)
}
}
// gzipAccepted returns whether the client will accept gzip-encoded content.
func gzipAccepted(header http.Header) bool {
a := header.Get(acceptEncodingHeader)
parts := strings.Split(a, ",")
for _, part := range parts {
part = strings.TrimSpace(part)
if part == "gzip" || strings.HasPrefix(part, "gzip;") {
return true
}
}
return false
}
// httpError removes any content-encoding header and then calls http.Error with
// the provided error and http.StatusInternalServerErrer. Error contents is
// supposed to be uncompressed plain text. However, same as with a plain
// http.Error, any header settings will be void if the header has already been
// sent. The error message will still be written to the writer, but it will
// probably be of limited use.
func httpError(rsp http.ResponseWriter, err error) {
rsp.Header().Del(contentEncodingHeader)
http.Error(
rsp,
"An error has occurred while serving metrics:\n\n"+err.Error(),
http.StatusInternalServerError,
)
}
// Copyright 2021 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//go:build go1.17
// +build go1.17
package internal
import (
"math"
"path"
"runtime/metrics"
"strings"
"github.com/prometheus/common/model"
)
// RuntimeMetricsToProm produces a Prometheus metric name from a runtime/metrics
// metric description and validates whether the metric is suitable for integration
// with Prometheus.
//
// Returns false if a name could not be produced, or if Prometheus does not understand
// the runtime/metrics Kind.
//
// Note that the main reason a name couldn't be produced is if the runtime/metrics
// package exports a name with characters outside the valid Prometheus metric name
// character set. This is theoretically possible, but should never happen in practice.
// Still, don't rely on it.
func RuntimeMetricsToProm(d *metrics.Description) (string, string, string, bool) {
namespace := "go"
comp := strings.SplitN(d.Name, ":", 2)
key := comp[0]
unit := comp[1]
// The last path element in the key is the name,
// the rest is the subsystem.
subsystem := path.Dir(key[1:] /* remove leading / */)
name := path.Base(key)
// subsystem is translated by replacing all / and - with _.
subsystem = strings.ReplaceAll(subsystem, "/", "_")
subsystem = strings.ReplaceAll(subsystem, "-", "_")
// unit is translated assuming that the unit contains no
// non-ASCII characters.
unit = strings.ReplaceAll(unit, "-", "_")
unit = strings.ReplaceAll(unit, "*", "_")
unit = strings.ReplaceAll(unit, "/", "_per_")
// name has - replaced with _ and is concatenated with the unit and
// other data.
name = strings.ReplaceAll(name, "-", "_")
name = name + "_" + unit
if d.Cumulative && d.Kind != metrics.KindFloat64Histogram {
name = name + "_total"
}
valid := model.IsValidMetricName(model.LabelValue(namespace + "_" + subsystem + "_" + name))
switch d.Kind {
case metrics.KindUint64:
case metrics.KindFloat64:
case metrics.KindFloat64Histogram:
default:
valid = false
}
return namespace, subsystem, name, valid
}
// RuntimeMetricsBucketsForUnit takes a set of buckets obtained for a runtime/metrics histogram
// type (so, lower-bound inclusive) and a unit from a runtime/metrics name, and produces
// a reduced set of buckets. This function always removes any -Inf bucket as it's represented
// as the bottom-most upper-bound inclusive bucket in Prometheus.
func RuntimeMetricsBucketsForUnit(buckets []float64, unit string) []float64 {
switch unit {
case "bytes":
// Re-bucket as powers of 2.
return reBucketExp(buckets, 2)
case "seconds":
// Re-bucket as powers of 10 and then merge all buckets greater
// than 1 second into the +Inf bucket.
b := reBucketExp(buckets, 10)
for i := range b {
if b[i] <= 1 {
continue
}
b[i] = math.Inf(1)
b = b[:i+1]
break
}
return b
}
return buckets
}
// reBucketExp takes a list of bucket boundaries (lower bound inclusive) and
// downsamples the buckets to those a multiple of base apart. The end result
// is a roughly exponential (in many cases, perfectly exponential) bucketing
// scheme.
func reBucketExp(buckets []float64, base float64) []float64 {
bucket := buckets[0]
var newBuckets []float64
// We may see a -Inf here, in which case, add it and skip it
// since we risk producing NaNs otherwise.
//
// We need to preserve -Inf values to maintain runtime/metrics
// conventions. We'll strip it out later.
if bucket == math.Inf(-1) {
newBuckets = append(newBuckets, bucket)
buckets = buckets[1:]
bucket = buckets[0]
}
// From now on, bucket should always have a non-Inf value because
// Infs are only ever at the ends of the bucket lists, so
// arithmetic operations on it are non-NaN.
for i := 1; i < len(buckets); i++ {
if bucket >= 0 && buckets[i] < bucket*base {
// The next bucket we want to include is at least bucket*base.
continue
} else if bucket < 0 && buckets[i] < bucket/base {
// In this case the bucket we're targeting is negative, and since
// we're ascending through buckets here, we need to divide to get
// closer to zero exponentially.
continue
}
// The +Inf bucket will always be the last one, and we'll always
// end up including it here because bucket
newBuckets = append(newBuckets, bucket)
bucket = buckets[i]
}
return append(newBuckets, bucket)
}
......@@ -17,12 +17,14 @@ import (
"strings"
"time"
//nolint:staticcheck // Ignore SA1019. Need to keep deprecated package for compatibility.
"github.com/golang/protobuf/proto"
"github.com/prometheus/common/model"
dto "github.com/prometheus/client_model/go"
)
const separatorByte byte = 255
var separatorByteSlice = []byte{model.SeparatorByte} // For convenient use with xxhash.
// A Metric models a single sample value with its meta data being exported to
// Prometheus. Implementations of Metric in this package are Gauge, Counter,
......@@ -56,7 +58,7 @@ type Metric interface {
}
// Opts bundles the options for creating most Metric types. Each metric
// implementation XXX has its own XXXOpts type, but in most cases, it is just be
// implementation XXX has its own XXXOpts type, but in most cases, it is just
// an alias of this type (which might change when the requirement arises.)
//
// It is mandatory to set Name to a non-empty string. All other fields are
......@@ -87,7 +89,7 @@ type Opts struct {
// better covered by target labels set by the scraping Prometheus
// server, or by one specific metric (e.g. a build_info or a
// machine_role metric). See also
// https://prometheus.io/docs/instrumenting/writing_exporters/#target-labels,-not-static-scraped-labels
// https://prometheus.io/docs/instrumenting/writing_exporters/#target-labels-not-static-scraped-labels
ConstLabels Labels
}
......
......@@ -50,3 +50,15 @@ type ObserverVec interface {
Collector
}
// ExemplarObserver is implemented by Observers that offer the option of
// observing a value together with an exemplar. Its ObserveWithExemplar method
// works like the Observe method of an Observer but also replaces the currently
// saved exemplar (if any) with a new one, created from the provided value, the
// current time as timestamp, and the provided Labels. Empty Labels will lead to
// a valid (label-less) exemplar. But if Labels is nil, the current exemplar is
// left in place. ObserveWithExemplar panics if any of the provided labels are
// invalid or if the provided labels contain more than 64 runes in total.
type ExemplarObserver interface {
ObserveWithExemplar(value float64, exemplar Labels)
}
......@@ -15,9 +15,11 @@ package prometheus
import (
"errors"
"fmt"
"io/ioutil"
"os"
"github.com/prometheus/procfs"
"strconv"
"strings"
)
type processCollector struct {
......@@ -52,27 +54,10 @@ type ProcessCollectorOpts struct {
ReportErrors bool
}
// NewProcessCollector returns a collector which exports the current state of
// process metrics including CPU, memory and file descriptor usage as well as
// the process start time. The detailed behavior is defined by the provided
// ProcessCollectorOpts. The zero value of ProcessCollectorOpts creates a
// collector for the current process with an empty namespace string and no error
// reporting.
//
// Currently, the collector depends on a Linux-style proc filesystem and
// therefore only exports metrics for Linux.
//
// Note: An older version of this function had the following signature:
//
// NewProcessCollector(pid int, namespace string) Collector
// NewProcessCollector is the obsolete version of collectors.NewProcessCollector.
// See there for documentation.
//
// Most commonly, it was called as
//
// NewProcessCollector(os.Getpid(), "")
//
// The following call of the current version is equivalent to the above:
//
// NewProcessCollector(ProcessCollectorOpts{})
// Deprecated: Use collectors.NewProcessCollector instead.
func NewProcessCollector(opts ProcessCollectorOpts) Collector {
ns := ""
if len(opts.Namespace) > 0 {
......@@ -126,7 +111,7 @@ func NewProcessCollector(opts ProcessCollectorOpts) Collector {
}
// Set up process metric collection if supported by the runtime.
if _, err := procfs.NewStat(); err == nil {
if canCollectProcess() {
c.collectFn = c.processCollect
} else {
c.collectFn = func(ch chan<- Metric) {
......@@ -153,46 +138,6 @@ func (c *processCollector) Collect(ch chan<- Metric) {
c.collectFn(ch)
}
func (c *processCollector) processCollect(ch chan<- Metric) {
pid, err := c.pidFn()
if err != nil {
c.reportError(ch, nil, err)
return
}
p, err := procfs.NewProc(pid)
if err != nil {
c.reportError(ch, nil, err)
return
}
if stat, err := p.NewStat(); err == nil {
ch <- MustNewConstMetric(c.cpuTotal, CounterValue, stat.CPUTime())
ch <- MustNewConstMetric(c.vsize, GaugeValue, float64(stat.VirtualMemory()))
ch <- MustNewConstMetric(c.rss, GaugeValue, float64(stat.ResidentMemory()))
if startTime, err := stat.StartTime(); err == nil {
ch <- MustNewConstMetric(c.startTime, GaugeValue, startTime)
} else {
c.reportError(ch, c.startTime, err)
}
} else {
c.reportError(ch, nil, err)
}
if fds, err := p.FileDescriptorsLen(); err == nil {
ch <- MustNewConstMetric(c.openFDs, GaugeValue, float64(fds))
} else {
c.reportError(ch, c.openFDs, err)
}
if limits, err := p.NewLimits(); err == nil {
ch <- MustNewConstMetric(c.maxFDs, GaugeValue, float64(limits.OpenFiles))
ch <- MustNewConstMetric(c.maxVsize, GaugeValue, float64(limits.AddressSpace))
} else {
c.reportError(ch, nil, err)
}
}
func (c *processCollector) reportError(ch chan<- Metric, desc *Desc, err error) {
if !c.reportErrors {
return
......@@ -202,3 +147,20 @@ func (c *processCollector) reportError(ch chan<- Metric, desc *Desc, err error)
}
ch <- NewInvalidMetric(desc, err)
}
// NewPidFileFn returns a function that retrieves a pid from the specified file.
// It is meant to be used for the PidFn field in ProcessCollectorOpts.
func NewPidFileFn(pidFilePath string) func() (int, error) {
return func() (int, error) {
content, err := ioutil.ReadFile(pidFilePath)
if err != nil {
return 0, fmt.Errorf("can't read pid file %q: %+v", pidFilePath, err)
}
pid, err := strconv.Atoi(strings.TrimSpace(string(content)))
if err != nil {
return 0, fmt.Errorf("can't parse pid file %q: %+v", pidFilePath, err)
}
return pid, nil
}
}
// Copyright 2019 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//go:build !windows
// +build !windows
package prometheus
import (
"github.com/prometheus/procfs"
)
func canCollectProcess() bool {
_, err := procfs.NewDefaultFS()
return err == nil
}
func (c *processCollector) processCollect(ch chan<- Metric) {
pid, err := c.pidFn()
if err != nil {
c.reportError(ch, nil, err)
return
}
p, err := procfs.NewProc(pid)
if err != nil {
c.reportError(ch, nil, err)
return
}
if stat, err := p.Stat(); err == nil {
ch <- MustNewConstMetric(c.cpuTotal, CounterValue, stat.CPUTime())
ch <- MustNewConstMetric(c.vsize, GaugeValue, float64(stat.VirtualMemory()))
ch <- MustNewConstMetric(c.rss, GaugeValue, float64(stat.ResidentMemory()))
if startTime, err := stat.StartTime(); err == nil {
ch <- MustNewConstMetric(c.startTime, GaugeValue, startTime)
} else {
c.reportError(ch, c.startTime, err)
}
} else {
c.reportError(ch, nil, err)
}
if fds, err := p.FileDescriptorsLen(); err == nil {
ch <- MustNewConstMetric(c.openFDs, GaugeValue, float64(fds))
} else {
c.reportError(ch, c.openFDs, err)
}
if limits, err := p.Limits(); err == nil {
ch <- MustNewConstMetric(c.maxFDs, GaugeValue, float64(limits.OpenFiles))
ch <- MustNewConstMetric(c.maxVsize, GaugeValue, float64(limits.AddressSpace))
} else {
c.reportError(ch, nil, err)
}
}