Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found
Select Git revision

Target

Select target project
  • ai3/tools/acmeserver
  • godog/acmeserver
  • svp-bot/acmeserver
3 results
Select Git revision
Show changes
Showing
with 610 additions and 131 deletions
......@@ -62,6 +62,10 @@ func RetryNotifyWithTimer(operation Operation, b BackOff, notify Notify, t Timer
}
if next = b.NextBackOff(); next == Stop {
if cerr := ctx.Err(); cerr != nil {
return cerr
}
return err
}
......
language: go
go:
- "1.x"
- master
env:
- TAGS=""
- TAGS="-tags purego"
script: go test $TAGS -v ./...
# xxhash
[![GoDoc](https://godoc.org/github.com/cespare/xxhash?status.svg)](https://godoc.org/github.com/cespare/xxhash)
[![Build Status](https://travis-ci.org/cespare/xxhash.svg?branch=master)](https://travis-ci.org/cespare/xxhash)
[![Go Reference](https://pkg.go.dev/badge/github.com/cespare/xxhash/v2.svg)](https://pkg.go.dev/github.com/cespare/xxhash/v2)
[![Test](https://github.com/cespare/xxhash/actions/workflows/test.yml/badge.svg)](https://github.com/cespare/xxhash/actions/workflows/test.yml)
xxhash is a Go implementation of the 64-bit
[xxHash](http://cyan4973.github.io/xxHash/) algorithm, XXH64. This is a
......@@ -64,4 +64,6 @@ $ go test -benchtime 10s -bench '/xxhash,direct,bytes'
- [InfluxDB](https://github.com/influxdata/influxdb)
- [Prometheus](https://github.com/prometheus/prometheus)
- [VictoriaMetrics](https://github.com/VictoriaMetrics/VictoriaMetrics)
- [FreeCache](https://github.com/coocood/freecache)
- [FastCache](https://github.com/VictoriaMetrics/fastcache)
module github.com/cespare/xxhash/v2
go 1.11
......@@ -193,7 +193,6 @@ func (d *Digest) UnmarshalBinary(b []byte) error {
b, d.v4 = consumeUint64(b)
b, d.total = consumeUint64(b)
copy(d.mem[:], b)
b = b[len(d.mem):]
d.n = int(d.total % uint64(len(d.mem)))
return nil
}
......
......@@ -6,41 +6,52 @@
package xxhash
import (
"reflect"
"unsafe"
)
// Notes:
// In the future it's possible that compiler optimizations will make these
// XxxString functions unnecessary by realizing that calls such as
// Sum64([]byte(s)) don't need to copy s. See https://golang.org/issue/2205.
// If that happens, even if we keep these functions they can be replaced with
// the trivial safe code.
// NOTE: The usual way of doing an unsafe string-to-[]byte conversion is:
//
// See https://groups.google.com/d/msg/golang-nuts/dcjzJy-bSpw/tcZYBzQqAQAJ
// for some discussion about these unsafe conversions.
// var b []byte
// bh := (*reflect.SliceHeader)(unsafe.Pointer(&b))
// bh.Data = (*reflect.StringHeader)(unsafe.Pointer(&s)).Data
// bh.Len = len(s)
// bh.Cap = len(s)
//
// In the future it's possible that compiler optimizations will make these
// unsafe operations unnecessary: https://golang.org/issue/2205.
// Unfortunately, as of Go 1.15.3 the inliner's cost model assigns a high enough
// weight to this sequence of expressions that any function that uses it will
// not be inlined. Instead, the functions below use a different unsafe
// conversion designed to minimize the inliner weight and allow both to be
// inlined. There is also a test (TestInlining) which verifies that these are
// inlined.
//
// Both of these wrapper functions still incur function call overhead since they
// will not be inlined. We could write Go/asm copies of Sum64 and Digest.Write
// for strings to squeeze out a bit more speed. Mid-stack inlining should
// eventually fix this.
// See https://github.com/golang/go/issues/42739 for discussion.
// Sum64String computes the 64-bit xxHash digest of s.
// It may be faster than Sum64([]byte(s)) by avoiding a copy.
func Sum64String(s string) uint64 {
var b []byte
bh := (*reflect.SliceHeader)(unsafe.Pointer(&b))
bh.Data = (*reflect.StringHeader)(unsafe.Pointer(&s)).Data
bh.Len = len(s)
bh.Cap = len(s)
b := *(*[]byte)(unsafe.Pointer(&sliceHeader{s, len(s)}))
return Sum64(b)
}
// WriteString adds more data to d. It always returns len(s), nil.
// It may be faster than Write([]byte(s)) by avoiding a copy.
func (d *Digest) WriteString(s string) (n int, err error) {
var b []byte
bh := (*reflect.SliceHeader)(unsafe.Pointer(&b))
bh.Data = (*reflect.StringHeader)(unsafe.Pointer(&s)).Data
bh.Len = len(s)
bh.Cap = len(s)
return d.Write(b)
d.Write(*(*[]byte)(unsafe.Pointer(&sliceHeader{s, len(s)})))
// d.Write always returns len(s), nil.
// Ignoring the return output and returning these fixed values buys a
// savings of 6 in the inliner's cost model.
return len(s), nil
}
// sliceHeader is similar to reflect.SliceHeader, but it assumes that the layout
// of the first two words is the same as the layout of a string.
type sliceHeader struct {
s string
cap int
}
......@@ -30,8 +30,8 @@ import (
// It returns one of the following:
// (0, nil) - watchdog isn't enabled or we aren't the watched PID.
// (0, err) - an error happened (e.g. error converting time).
// (time, nil) - watchdog is enabled and we can send ping.
// time is delay before inactive service will be killed.
// (time, nil) - watchdog is enabled and we can send ping. time is delay
// before inactive service will be killed.
func SdWatchdogEnabled(unsetEnvironment bool) (time.Duration, error) {
wusec := os.Getenv("WATCHDOG_USEC")
wpid := os.Getenv("WATCHDOG_PID")
......
......@@ -65,7 +65,8 @@ being called, or called more than once, as well as concurrent calls to
Unfortunately this package is not perfect either. It's possible that it is
still missing some interfaces provided by the go core (let me know if you find
one), and it won't work for applications adding their own interfaces into the
mix.
mix. You can however use `httpsnoop.Unwrap(w)` to access the underlying
`http.ResponseWriter` and type-assert the result to its other interfaces.
However, hopefully the explanation above has sufficiently scared you of rolling
your own solution to this problem. httpsnoop may still break your application,
......
module github.com/felixge/httpsnoop
go 1.13
# CHANGELOG
## v1.0.0-rc1
This is the first logged release. Major changes (including breaking changes)
have occurred since earlier tags.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.