bloom.go 2.87 KB
Newer Older
ale's avatar
ale committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
// Copyright (c) 2012, Suryandaru Triandana <syndtr@gmail.com>
// All rights reserved.
//
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

package filter

import (
	"github.com/syndtr/goleveldb/leveldb/util"
)

func bloomHash(key []byte) uint32 {
	return util.Hash(key, 0xbc9f1d34)
}

type bloomFilter int

19
// The bloom filter serializes its parameters and is backward compatible
ale's avatar
ale committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
// with respect to them. Therefor, its parameters are not added to its
// name.
func (bloomFilter) Name() string {
	return "leveldb.BuiltinBloomFilter"
}

func (f bloomFilter) Contains(filter, key []byte) bool {
	nBytes := len(filter) - 1
	if nBytes < 1 {
		return false
	}
	nBits := uint32(nBytes * 8)

	// Use the encoded k so that we can read filters generated by
	// bloom filters created using different parameters.
	k := filter[nBytes]
	if k > 30 {
		// Reserved for potentially new encodings for short bloom filters.
		// Consider it a match.
		return true
	}

	kh := bloomHash(key)
	delta := (kh >> 17) | (kh << 15) // Rotate right 17 bits
	for j := uint8(0); j < k; j++ {
		bitpos := kh % nBits
		if (uint32(filter[bitpos/8]) & (1 << (bitpos % 8))) == 0 {
			return false
		}
		kh += delta
	}
	return true
}

func (f bloomFilter) NewGenerator() FilterGenerator {
	// Round down to reduce probing cost a little bit.
	k := uint8(f * 69 / 100) // 0.69 =~ ln(2)
	if k < 1 {
		k = 1
	} else if k > 30 {
		k = 30
	}
	return &bloomFilterGenerator{
		n: int(f),
		k: k,
	}
}

type bloomFilterGenerator struct {
	n int
	k uint8

	keyHashes []uint32
}

func (g *bloomFilterGenerator) Add(key []byte) {
	// Use double-hashing to generate a sequence of hash values.
	// See analysis in [Kirsch,Mitzenmacher 2006].
	g.keyHashes = append(g.keyHashes, bloomHash(key))
}

func (g *bloomFilterGenerator) Generate(b Buffer) {
	// Compute bloom filter size (in both bits and bytes)
	nBits := uint32(len(g.keyHashes) * g.n)
	// For small n, we can see a very high false positive rate.  Fix it
	// by enforcing a minimum bloom filter length.
	if nBits < 64 {
		nBits = 64
	}
	nBytes := (nBits + 7) / 8
	nBits = nBytes * 8

	dest := b.Alloc(int(nBytes) + 1)
	dest[nBytes] = g.k
	for _, kh := range g.keyHashes {
		delta := (kh >> 17) | (kh << 15) // Rotate right 17 bits
		for j := uint8(0); j < g.k; j++ {
			bitpos := kh % nBits
			dest[bitpos/8] |= (1 << (bitpos % 8))
			kh += delta
		}
	}

	g.keyHashes = g.keyHashes[:0]
}

// NewBloomFilter creates a new initialized bloom filter for given
// bitsPerKey.
//
// Since bitsPerKey is persisted individually for each bloom filter
// serialization, bloom filters are backwards compatible with respect to
// changing bitsPerKey. This means that no big performance penalty will
// be experienced when changing the parameter. See documentation for
// opt.Options.Filter for more information.
func NewBloomFilter(bitsPerKey int) Filter {
	return bloomFilter(bitsPerKey)
}