Skip to content
Snippets Groups Projects
decode.go 23.9 KiB
Newer Older
  • Learn to ignore specific revisions
  • ale's avatar
    ale committed
    // Go support for Protocol Buffers - Google's data interchange format
    //
    // Copyright 2010 The Go Authors.  All rights reserved.
    // https://github.com/golang/protobuf
    //
    // Redistribution and use in source and binary forms, with or without
    // modification, are permitted provided that the following conditions are
    // met:
    //
    //     * Redistributions of source code must retain the above copyright
    // notice, this list of conditions and the following disclaimer.
    //     * Redistributions in binary form must reproduce the above
    // copyright notice, this list of conditions and the following disclaimer
    // in the documentation and/or other materials provided with the
    // distribution.
    //     * Neither the name of Google Inc. nor the names of its
    // contributors may be used to endorse or promote products derived from
    // this software without specific prior written permission.
    //
    // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
    // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
    // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
    // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
    // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
    // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    
    package proto
    
    /*
     * Routines for decoding protocol buffer data to construct in-memory representations.
     */
    
    import (
    	"errors"
    	"fmt"
    	"io"
    
    ale's avatar
    ale committed
    )
    
    // errOverflow is returned when an integer is too large to be represented.
    var errOverflow = errors.New("proto: integer overflow")
    
    // ErrInternalBadWireType is returned by generated code when an incorrect
    // wire type is encountered. It does not get returned to user code.
    var ErrInternalBadWireType = errors.New("proto: internal error: bad wiretype for oneof")
    
    
    // The fundamental decoders that interpret bytes on the wire.
    // Those that take integer types all return uint64 and are
    // therefore of type valueDecoder.
    
    
    ale's avatar
    ale committed
    // DecodeVarint reads a varint-encoded integer from the slice.
    // It returns the integer and the number of bytes consumed, or
    // zero if there is not enough.
    // This is the format for the
    // int32, int64, uint32, uint64, bool, and enum
    // protocol buffer types.
    func DecodeVarint(buf []byte) (x uint64, n int) {
    	for shift := uint(0); shift < 64; shift += 7 {
    		if n >= len(buf) {
    			return 0, 0
    		}
    		b := uint64(buf[n])
    		n++
    		x |= (b & 0x7F) << shift
    		if (b & 0x80) == 0 {
    			return x, n
    		}
    	}
    
    	// The number is too large to represent in a 64-bit value.
    	return 0, 0
    }
    
    func (p *Buffer) decodeVarintSlow() (x uint64, err error) {
    	i := p.index
    	l := len(p.buf)
    
    	for shift := uint(0); shift < 64; shift += 7 {
    		if i >= l {
    			err = io.ErrUnexpectedEOF
    			return
    		}
    		b := p.buf[i]
    		i++
    		x |= (uint64(b) & 0x7F) << shift
    		if b < 0x80 {
    			p.index = i
    			return
    		}
    	}
    
    	// The number is too large to represent in a 64-bit value.
    	err = errOverflow
    	return
    }
    
    // DecodeVarint reads a varint-encoded integer from the Buffer.
    // This is the format for the
    // int32, int64, uint32, uint64, bool, and enum
    // protocol buffer types.
    func (p *Buffer) DecodeVarint() (x uint64, err error) {
    	i := p.index
    	buf := p.buf
    
    	if i >= len(buf) {
    		return 0, io.ErrUnexpectedEOF
    	} else if buf[i] < 0x80 {
    		p.index++
    		return uint64(buf[i]), nil
    	} else if len(buf)-i < 10 {
    		return p.decodeVarintSlow()
    	}
    
    	var b uint64
    	// we already checked the first byte
    	x = uint64(buf[i]) - 0x80
    	i++
    
    	b = uint64(buf[i])
    	i++
    	x += b << 7
    	if b&0x80 == 0 {
    		goto done
    	}
    	x -= 0x80 << 7
    
    	b = uint64(buf[i])
    	i++
    	x += b << 14
    	if b&0x80 == 0 {
    		goto done
    	}
    	x -= 0x80 << 14
    
    	b = uint64(buf[i])
    	i++
    	x += b << 21
    	if b&0x80 == 0 {
    		goto done
    	}
    	x -= 0x80 << 21
    
    	b = uint64(buf[i])
    	i++
    	x += b << 28
    	if b&0x80 == 0 {
    		goto done
    	}
    	x -= 0x80 << 28
    
    	b = uint64(buf[i])
    	i++
    	x += b << 35
    	if b&0x80 == 0 {
    		goto done
    	}
    	x -= 0x80 << 35
    
    	b = uint64(buf[i])
    	i++
    	x += b << 42
    	if b&0x80 == 0 {
    		goto done
    	}
    	x -= 0x80 << 42
    
    	b = uint64(buf[i])
    	i++
    	x += b << 49
    	if b&0x80 == 0 {
    		goto done
    	}
    	x -= 0x80 << 49
    
    	b = uint64(buf[i])
    	i++
    	x += b << 56
    	if b&0x80 == 0 {
    		goto done
    	}
    	x -= 0x80 << 56
    
    	b = uint64(buf[i])
    	i++
    	x += b << 63
    	if b&0x80 == 0 {
    		goto done
    	}
    	// x -= 0x80 << 63 // Always zero.
    
    	return 0, errOverflow
    
    done:
    	p.index = i
    	return x, nil
    }
    
    // DecodeFixed64 reads a 64-bit integer from the Buffer.
    // This is the format for the
    // fixed64, sfixed64, and double protocol buffer types.
    func (p *Buffer) DecodeFixed64() (x uint64, err error) {
    	// x, err already 0
    	i := p.index + 8
    	if i < 0 || i > len(p.buf) {
    		err = io.ErrUnexpectedEOF
    		return
    	}
    	p.index = i
    
    	x = uint64(p.buf[i-8])
    	x |= uint64(p.buf[i-7]) << 8
    	x |= uint64(p.buf[i-6]) << 16
    	x |= uint64(p.buf[i-5]) << 24
    	x |= uint64(p.buf[i-4]) << 32
    	x |= uint64(p.buf[i-3]) << 40
    	x |= uint64(p.buf[i-2]) << 48
    	x |= uint64(p.buf[i-1]) << 56
    	return
    }
    
    // DecodeFixed32 reads a 32-bit integer from the Buffer.
    // This is the format for the
    // fixed32, sfixed32, and float protocol buffer types.
    func (p *Buffer) DecodeFixed32() (x uint64, err error) {
    	// x, err already 0
    	i := p.index + 4
    	if i < 0 || i > len(p.buf) {
    		err = io.ErrUnexpectedEOF
    		return
    	}
    	p.index = i
    
    	x = uint64(p.buf[i-4])
    	x |= uint64(p.buf[i-3]) << 8
    	x |= uint64(p.buf[i-2]) << 16
    	x |= uint64(p.buf[i-1]) << 24
    	return
    }
    
    // DecodeZigzag64 reads a zigzag-encoded 64-bit integer
    // from the Buffer.
    // This is the format used for the sint64 protocol buffer type.
    func (p *Buffer) DecodeZigzag64() (x uint64, err error) {
    	x, err = p.DecodeVarint()
    	if err != nil {
    		return
    	}
    	x = (x >> 1) ^ uint64((int64(x&1)<<63)>>63)
    	return
    }
    
    // DecodeZigzag32 reads a zigzag-encoded 32-bit integer
    // from  the Buffer.
    // This is the format used for the sint32 protocol buffer type.
    func (p *Buffer) DecodeZigzag32() (x uint64, err error) {
    	x, err = p.DecodeVarint()
    	if err != nil {
    		return
    	}
    	x = uint64((uint32(x) >> 1) ^ uint32((int32(x&1)<<31)>>31))
    	return
    }
    
    
    // These are not ValueDecoders: they produce an array of bytes or a string.
    // bytes, embedded messages
    
    
    ale's avatar
    ale committed
    // DecodeRawBytes reads a count-delimited byte buffer from the Buffer.
    // This is the format used for the bytes protocol buffer
    // type and for embedded messages.
    func (p *Buffer) DecodeRawBytes(alloc bool) (buf []byte, err error) {
    	n, err := p.DecodeVarint()
    	if err != nil {
    		return nil, err
    	}
    
    	nb := int(n)
    	if nb < 0 {
    		return nil, fmt.Errorf("proto: bad byte length %d", nb)
    	}
    	end := p.index + nb
    	if end < p.index || end > len(p.buf) {
    		return nil, io.ErrUnexpectedEOF
    	}
    
    	if !alloc {
    		// todo: check if can get more uses of alloc=false
    		buf = p.buf[p.index:end]
    		p.index += nb
    		return
    	}
    
    	buf = make([]byte, nb)
    	copy(buf, p.buf[p.index:])
    	p.index += nb
    	return
    }
    
    // DecodeStringBytes reads an encoded string from the Buffer.
    // This is the format used for the proto2 string type.
    func (p *Buffer) DecodeStringBytes() (s string, err error) {
    	buf, err := p.DecodeRawBytes(false)
    	if err != nil {
    		return
    	}
    	return string(buf), nil
    }
    
    
    // Skip the next item in the buffer. Its wire type is decoded and presented as an argument.
    // If the protocol buffer has extensions, and the field matches, add it as an extension.
    // Otherwise, if the XXX_unrecognized field exists, append the skipped data there.
    func (o *Buffer) skipAndSave(t reflect.Type, tag, wire int, base structPointer, unrecField field) error {
    	oi := o.index
    
    	err := o.skip(t, tag, wire)
    	if err != nil {
    		return err
    	}
    
    	if !unrecField.IsValid() {
    		return nil
    	}
    
    	ptr := structPointer_Bytes(base, unrecField)
    
    	// Add the skipped field to struct field
    	obuf := o.buf
    
    	o.buf = *ptr
    	o.EncodeVarint(uint64(tag<<3 | wire))
    	*ptr = append(o.buf, obuf[oi:o.index]...)
    
    	o.buf = obuf
    
    	return nil
    }
    
    // Skip the next item in the buffer. Its wire type is decoded and presented as an argument.
    func (o *Buffer) skip(t reflect.Type, tag, wire int) error {
    
    	var u uint64
    	var err error
    
    	switch wire {
    	case WireVarint:
    		_, err = o.DecodeVarint()
    	case WireFixed64:
    		_, err = o.DecodeFixed64()
    	case WireBytes:
    		_, err = o.DecodeRawBytes(false)
    	case WireFixed32:
    		_, err = o.DecodeFixed32()
    	case WireStartGroup:
    		for {
    			u, err = o.DecodeVarint()
    			if err != nil {
    				break
    			}
    			fwire := int(u & 0x7)
    			if fwire == WireEndGroup {
    				break
    			}
    			ftag := int(u >> 3)
    			err = o.skip(t, ftag, fwire)
    			if err != nil {
    				break
    			}
    		}
    	default:
    		err = fmt.Errorf("proto: can't skip unknown wire type %d for %s", wire, t)
    	}
    	return err
    }
    
    
    ale's avatar
    ale committed
    // Unmarshaler is the interface representing objects that can
    
    // unmarshal themselves.  The method should reset the receiver before
    // decoding starts.  The argument points to data that may be
    
    ale's avatar
    ale committed
    // overwritten, so implementations should not keep references to the
    // buffer.
    type Unmarshaler interface {
    	Unmarshal([]byte) error
    }
    
    // Unmarshal parses the protocol buffer representation in buf and places the
    // decoded result in pb.  If the struct underlying pb does not match
    // the data in buf, the results can be unpredictable.
    //
    // Unmarshal resets pb before starting to unmarshal, so any
    // existing data in pb is always removed. Use UnmarshalMerge
    // to preserve and append to existing data.
    func Unmarshal(buf []byte, pb Message) error {
    	pb.Reset()
    
    	return UnmarshalMerge(buf, pb)
    
    ale's avatar
    ale committed
    }
    
    // UnmarshalMerge parses the protocol buffer representation in buf and
    // writes the decoded result to pb.  If the struct underlying pb does not match
    // the data in buf, the results can be unpredictable.
    //
    // UnmarshalMerge merges into existing data in pb.
    // Most code should use Unmarshal instead.
    func UnmarshalMerge(buf []byte, pb Message) error {
    
    	// If the object can unmarshal itself, let it.
    
    ale's avatar
    ale committed
    	if u, ok := pb.(Unmarshaler); ok {
    		return u.Unmarshal(buf)
    	}
    	return NewBuffer(buf).Unmarshal(pb)
    }
    
    // DecodeMessage reads a count-delimited message from the Buffer.
    func (p *Buffer) DecodeMessage(pb Message) error {
    	enc, err := p.DecodeRawBytes(false)
    	if err != nil {
    		return err
    	}
    	return NewBuffer(enc).Unmarshal(pb)
    }
    
    // DecodeGroup reads a tag-delimited group from the Buffer.
    func (p *Buffer) DecodeGroup(pb Message) error {
    
    	typ, base, err := getbase(pb)
    	if err != nil {
    		return err
    
    ale's avatar
    ale committed
    	}
    
    	return p.unmarshalType(typ.Elem(), GetProperties(typ.Elem()), true, base)
    
    ale's avatar
    ale committed
    }
    
    // Unmarshal parses the protocol buffer representation in the
    // Buffer and places the decoded result in pb.  If the struct
    // underlying pb does not match the data in the buffer, the results can be
    // unpredictable.
    //
    // Unlike proto.Unmarshal, this does not reset pb before starting to unmarshal.
    func (p *Buffer) Unmarshal(pb Message) error {
    	// If the object can unmarshal itself, let it.
    	if u, ok := pb.(Unmarshaler); ok {
    		err := u.Unmarshal(p.buf[p.index:])
    		p.index = len(p.buf)
    		return err
    	}
    
    
    447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
    	typ, base, err := getbase(pb)
    	if err != nil {
    		return err
    	}
    
    	err = p.unmarshalType(typ.Elem(), GetProperties(typ.Elem()), false, base)
    
    	if collectStats {
    		stats.Decode++
    	}
    
    	return err
    }
    
    // unmarshalType does the work of unmarshaling a structure.
    func (o *Buffer) unmarshalType(st reflect.Type, prop *StructProperties, is_group bool, base structPointer) error {
    	var state errorState
    	required, reqFields := prop.reqCount, uint64(0)
    
    	var err error
    	for err == nil && o.index < len(o.buf) {
    		oi := o.index
    		var u uint64
    		u, err = o.DecodeVarint()
    		if err != nil {
    			break
    		}
    		wire := int(u & 0x7)
    		if wire == WireEndGroup {
    			if is_group {
    				if required > 0 {
    					// Not enough information to determine the exact field.
    					// (See below.)
    					return &RequiredNotSetError{"{Unknown}"}
    				}
    				return nil // input is satisfied
    			}
    			return fmt.Errorf("proto: %s: wiretype end group for non-group", st)
    		}
    		tag := int(u >> 3)
    		if tag <= 0 {
    			return fmt.Errorf("proto: %s: illegal tag %d (wire type %d)", st, tag, wire)
    		}
    		fieldnum, ok := prop.decoderTags.get(tag)
    		if !ok {
    			// Maybe it's an extension?
    			if prop.extendable {
    				if e, _ := extendable(structPointer_Interface(base, st)); isExtensionField(e, int32(tag)) {
    					if err = o.skip(st, tag, wire); err == nil {
    						extmap := e.extensionsWrite()
    						ext := extmap[int32(tag)] // may be missing
    						ext.enc = append(ext.enc, o.buf[oi:o.index]...)
    						extmap[int32(tag)] = ext
    					}
    					continue
    				}
    			}
    			// Maybe it's a oneof?
    			if prop.oneofUnmarshaler != nil {
    				m := structPointer_Interface(base, st).(Message)
    				// First return value indicates whether tag is a oneof field.
    				ok, err = prop.oneofUnmarshaler(m, tag, wire, o)
    				if err == ErrInternalBadWireType {
    					// Map the error to something more descriptive.
    					// Do the formatting here to save generated code space.
    					err = fmt.Errorf("bad wiretype for oneof field in %T", m)
    				}
    				if ok {
    					continue
    				}
    			}
    			err = o.skipAndSave(st, tag, wire, base, prop.unrecField)
    			continue
    		}
    		p := prop.Prop[fieldnum]
    
    		if p.dec == nil {
    			fmt.Fprintf(os.Stderr, "proto: no protobuf decoder for %s.%s\n", st, st.Field(fieldnum).Name)
    			continue
    		}
    		dec := p.dec
    		if wire != WireStartGroup && wire != p.WireType {
    			if wire == WireBytes && p.packedDec != nil {
    				// a packable field
    				dec = p.packedDec
    			} else {
    				err = fmt.Errorf("proto: bad wiretype for field %s.%s: got wiretype %d, want %d", st, st.Field(fieldnum).Name, wire, p.WireType)
    				continue
    			}
    		}
    		decErr := dec(o, p, base)
    		if decErr != nil && !state.shouldContinue(decErr, p) {
    			err = decErr
    		}
    		if err == nil && p.Required {
    			// Successfully decoded a required field.
    			if tag <= 64 {
    				// use bitmap for fields 1-64 to catch field reuse.
    				var mask uint64 = 1 << uint64(tag-1)
    				if reqFields&mask == 0 {
    					// new required field
    					reqFields |= mask
    					required--
    				}
    			} else {
    				// This is imprecise. It can be fooled by a required field
    				// with a tag > 64 that is encoded twice; that's very rare.
    				// A fully correct implementation would require allocating
    				// a data structure, which we would like to avoid.
    				required--
    			}
    		}
    	}
    	if err == nil {
    		if is_group {
    			return io.ErrUnexpectedEOF
    		}
    		if state.err != nil {
    			return state.err
    		}
    		if required > 0 {
    			// Not enough information to determine the exact field. If we use extra
    			// CPU, we could determine the field only if the missing required field
    			// has a tag <= 64 and we check reqFields.
    			return &RequiredNotSetError{"{Unknown}"}
    		}
    	}
    	return err
    }
    
    // Individual type decoders
    // For each,
    //	u is the decoded value,
    //	v is a pointer to the field (pointer) in the struct
    
    // Sizes of the pools to allocate inside the Buffer.
    // The goal is modest amortization and allocation
    // on at least 16-byte boundaries.
    const (
    	boolPoolSize   = 16
    	uint32PoolSize = 8
    	uint64PoolSize = 4
    )
    
    // Decode a bool.
    func (o *Buffer) dec_bool(p *Properties, base structPointer) error {
    	u, err := p.valDec(o)
    	if err != nil {
    		return err
    	}
    	if len(o.bools) == 0 {
    		o.bools = make([]bool, boolPoolSize)
    	}
    	o.bools[0] = u != 0
    	*structPointer_Bool(base, p.field) = &o.bools[0]
    	o.bools = o.bools[1:]
    	return nil
    }
    
    func (o *Buffer) dec_proto3_bool(p *Properties, base structPointer) error {
    	u, err := p.valDec(o)
    	if err != nil {
    		return err
    	}
    	*structPointer_BoolVal(base, p.field) = u != 0
    	return nil
    }
    
    // Decode an int32.
    func (o *Buffer) dec_int32(p *Properties, base structPointer) error {
    	u, err := p.valDec(o)
    	if err != nil {
    		return err
    	}
    	word32_Set(structPointer_Word32(base, p.field), o, uint32(u))
    	return nil
    }
    
    func (o *Buffer) dec_proto3_int32(p *Properties, base structPointer) error {
    	u, err := p.valDec(o)
    	if err != nil {
    		return err
    	}
    	word32Val_Set(structPointer_Word32Val(base, p.field), uint32(u))
    	return nil
    }
    
    // Decode an int64.
    func (o *Buffer) dec_int64(p *Properties, base structPointer) error {
    	u, err := p.valDec(o)
    	if err != nil {
    		return err
    	}
    	word64_Set(structPointer_Word64(base, p.field), o, u)
    	return nil
    }
    
    func (o *Buffer) dec_proto3_int64(p *Properties, base structPointer) error {
    	u, err := p.valDec(o)
    	if err != nil {
    		return err
    	}
    	word64Val_Set(structPointer_Word64Val(base, p.field), o, u)
    	return nil
    }
    
    // Decode a string.
    func (o *Buffer) dec_string(p *Properties, base structPointer) error {
    	s, err := o.DecodeStringBytes()
    	if err != nil {
    		return err
    	}
    	*structPointer_String(base, p.field) = &s
    	return nil
    }
    
    func (o *Buffer) dec_proto3_string(p *Properties, base structPointer) error {
    	s, err := o.DecodeStringBytes()
    	if err != nil {
    		return err
    	}
    	*structPointer_StringVal(base, p.field) = s
    	return nil
    }
    
    // Decode a slice of bytes ([]byte).
    func (o *Buffer) dec_slice_byte(p *Properties, base structPointer) error {
    	b, err := o.DecodeRawBytes(true)
    	if err != nil {
    		return err
    	}
    	*structPointer_Bytes(base, p.field) = b
    	return nil
    }
    
    // Decode a slice of bools ([]bool).
    func (o *Buffer) dec_slice_bool(p *Properties, base structPointer) error {
    	u, err := p.valDec(o)
    	if err != nil {
    		return err
    	}
    	v := structPointer_BoolSlice(base, p.field)
    	*v = append(*v, u != 0)
    	return nil
    }
    
    // Decode a slice of bools ([]bool) in packed format.
    func (o *Buffer) dec_slice_packed_bool(p *Properties, base structPointer) error {
    	v := structPointer_BoolSlice(base, p.field)
    
    	nn, err := o.DecodeVarint()
    	if err != nil {
    		return err
    	}
    	nb := int(nn) // number of bytes of encoded bools
    	fin := o.index + nb
    	if fin < o.index {
    		return errOverflow
    	}
    
    	y := *v
    	for o.index < fin {
    		u, err := p.valDec(o)
    		if err != nil {
    			return err
    		}
    		y = append(y, u != 0)
    	}
    
    	*v = y
    	return nil
    }
    
    // Decode a slice of int32s ([]int32).
    func (o *Buffer) dec_slice_int32(p *Properties, base structPointer) error {
    	u, err := p.valDec(o)
    	if err != nil {
    		return err
    	}
    	structPointer_Word32Slice(base, p.field).Append(uint32(u))
    	return nil
    }
    
    // Decode a slice of int32s ([]int32) in packed format.
    func (o *Buffer) dec_slice_packed_int32(p *Properties, base structPointer) error {
    	v := structPointer_Word32Slice(base, p.field)
    
    	nn, err := o.DecodeVarint()
    	if err != nil {
    		return err
    	}
    	nb := int(nn) // number of bytes of encoded int32s
    
    	fin := o.index + nb
    	if fin < o.index {
    		return errOverflow
    	}
    	for o.index < fin {
    		u, err := p.valDec(o)
    		if err != nil {
    			return err
    		}
    		v.Append(uint32(u))
    	}
    	return nil
    }
    
    // Decode a slice of int64s ([]int64).
    func (o *Buffer) dec_slice_int64(p *Properties, base structPointer) error {
    	u, err := p.valDec(o)
    	if err != nil {
    		return err
    	}
    
    	structPointer_Word64Slice(base, p.field).Append(u)
    	return nil
    }
    
    // Decode a slice of int64s ([]int64) in packed format.
    func (o *Buffer) dec_slice_packed_int64(p *Properties, base structPointer) error {
    	v := structPointer_Word64Slice(base, p.field)
    
    	nn, err := o.DecodeVarint()
    	if err != nil {
    		return err
    	}
    	nb := int(nn) // number of bytes of encoded int64s
    
    	fin := o.index + nb
    	if fin < o.index {
    		return errOverflow
    	}
    	for o.index < fin {
    		u, err := p.valDec(o)
    		if err != nil {
    			return err
    		}
    		v.Append(u)
    	}
    	return nil
    }
    
    // Decode a slice of strings ([]string).
    func (o *Buffer) dec_slice_string(p *Properties, base structPointer) error {
    	s, err := o.DecodeStringBytes()
    	if err != nil {
    		return err
    	}
    	v := structPointer_StringSlice(base, p.field)
    	*v = append(*v, s)
    	return nil
    }
    
    // Decode a slice of slice of bytes ([][]byte).
    func (o *Buffer) dec_slice_slice_byte(p *Properties, base structPointer) error {
    	b, err := o.DecodeRawBytes(true)
    	if err != nil {
    		return err
    	}
    	v := structPointer_BytesSlice(base, p.field)
    	*v = append(*v, b)
    	return nil
    }
    
    // Decode a map field.
    func (o *Buffer) dec_new_map(p *Properties, base structPointer) error {
    	raw, err := o.DecodeRawBytes(false)
    	if err != nil {
    		return err
    	}
    	oi := o.index       // index at the end of this map entry
    	o.index -= len(raw) // move buffer back to start of map entry
    
    	mptr := structPointer_NewAt(base, p.field, p.mtype) // *map[K]V
    	if mptr.Elem().IsNil() {
    		mptr.Elem().Set(reflect.MakeMap(mptr.Type().Elem()))
    	}
    	v := mptr.Elem() // map[K]V
    
    	// Prepare addressable doubly-indirect placeholders for the key and value types.
    	// See enc_new_map for why.
    	keyptr := reflect.New(reflect.PtrTo(p.mtype.Key())).Elem() // addressable *K
    	keybase := toStructPointer(keyptr.Addr())                  // **K
    
    	var valbase structPointer
    	var valptr reflect.Value
    	switch p.mtype.Elem().Kind() {
    	case reflect.Slice:
    		// []byte
    		var dummy []byte
    		valptr = reflect.ValueOf(&dummy)  // *[]byte
    		valbase = toStructPointer(valptr) // *[]byte
    	case reflect.Ptr:
    		// message; valptr is **Msg; need to allocate the intermediate pointer
    		valptr = reflect.New(reflect.PtrTo(p.mtype.Elem())).Elem() // addressable *V
    		valptr.Set(reflect.New(valptr.Type().Elem()))
    		valbase = toStructPointer(valptr)
    	default:
    		// everything else
    		valptr = reflect.New(reflect.PtrTo(p.mtype.Elem())).Elem() // addressable *V
    		valbase = toStructPointer(valptr.Addr())                   // **V
    	}
    
    	// Decode.
    	// This parses a restricted wire format, namely the encoding of a message
    	// with two fields. See enc_new_map for the format.
    	for o.index < oi {
    		// tagcode for key and value properties are always a single byte
    		// because they have tags 1 and 2.
    		tagcode := o.buf[o.index]
    		o.index++
    		switch tagcode {
    		case p.mkeyprop.tagcode[0]:
    			if err := p.mkeyprop.dec(o, p.mkeyprop, keybase); err != nil {
    				return err
    			}
    		case p.mvalprop.tagcode[0]:
    			if err := p.mvalprop.dec(o, p.mvalprop, valbase); err != nil {
    				return err
    			}
    		default:
    			// TODO: Should we silently skip this instead?
    			return fmt.Errorf("proto: bad map data tag %d", raw[0])
    		}
    	}
    	keyelem, valelem := keyptr.Elem(), valptr.Elem()
    	if !keyelem.IsValid() {
    		keyelem = reflect.Zero(p.mtype.Key())
    	}
    	if !valelem.IsValid() {
    		valelem = reflect.Zero(p.mtype.Elem())
    	}
    
    	v.SetMapIndex(keyelem, valelem)
    	return nil
    }
    
    // Decode a group.
    func (o *Buffer) dec_struct_group(p *Properties, base structPointer) error {
    	bas := structPointer_GetStructPointer(base, p.field)
    	if structPointer_IsNil(bas) {
    		// allocate new nested message
    		bas = toStructPointer(reflect.New(p.stype))
    		structPointer_SetStructPointer(base, p.field, bas)
    	}
    	return o.unmarshalType(p.stype, p.sprop, true, bas)
    }
    
    // Decode an embedded message.
    func (o *Buffer) dec_struct_message(p *Properties, base structPointer) (err error) {
    	raw, e := o.DecodeRawBytes(false)
    	if e != nil {
    		return e
    	}
    
    	bas := structPointer_GetStructPointer(base, p.field)
    	if structPointer_IsNil(bas) {
    		// allocate new nested message
    		bas = toStructPointer(reflect.New(p.stype))
    		structPointer_SetStructPointer(base, p.field, bas)
    	}
    
    	// If the object can unmarshal itself, let it.
    	if p.isUnmarshaler {
    		iv := structPointer_Interface(bas, p.stype)
    		return iv.(Unmarshaler).Unmarshal(raw)
    	}
    
    	obuf := o.buf
    	oi := o.index
    	o.buf = raw
    	o.index = 0
    
    	err = o.unmarshalType(p.stype, p.sprop, false, bas)
    	o.buf = obuf
    	o.index = oi
    
    	return err
    }
    
    // Decode a slice of embedded messages.
    func (o *Buffer) dec_slice_struct_message(p *Properties, base structPointer) error {
    	return o.dec_slice_struct(p, false, base)
    }
    
    // Decode a slice of embedded groups.
    func (o *Buffer) dec_slice_struct_group(p *Properties, base structPointer) error {
    	return o.dec_slice_struct(p, true, base)
    }
    
    // Decode a slice of structs ([]*struct).
    func (o *Buffer) dec_slice_struct(p *Properties, is_group bool, base structPointer) error {
    	v := reflect.New(p.stype)
    	bas := toStructPointer(v)
    	structPointer_StructPointerSlice(base, p.field).Append(bas)
    
    	if is_group {
    		err := o.unmarshalType(p.stype, p.sprop, is_group, bas)
    		return err
    	}
    
    	raw, err := o.DecodeRawBytes(false)
    	if err != nil {
    		return err
    	}
    
    	// If the object can unmarshal itself, let it.
    	if p.isUnmarshaler {
    		iv := v.Interface()
    		return iv.(Unmarshaler).Unmarshal(raw)
    	}
    
    	obuf := o.buf
    	oi := o.index
    	o.buf = raw
    	o.index = 0
    
    	err = o.unmarshalType(p.stype, p.sprop, is_group, bas)
    
    	o.buf = obuf
    	o.index = oi
    
    
    ale's avatar
    ale committed
    	return err
    }