Skip to content
Snippets Groups Projects
lib.go 26 KiB
Newer Older
  • Learn to ignore specific revisions
  • ale's avatar
    ale committed
    // Go support for Protocol Buffers - Google's data interchange format
    //
    // Copyright 2010 The Go Authors.  All rights reserved.
    // https://github.com/golang/protobuf
    //
    // Redistribution and use in source and binary forms, with or without
    // modification, are permitted provided that the following conditions are
    // met:
    //
    //     * Redistributions of source code must retain the above copyright
    // notice, this list of conditions and the following disclaimer.
    //     * Redistributions in binary form must reproduce the above
    // copyright notice, this list of conditions and the following disclaimer
    // in the documentation and/or other materials provided with the
    // distribution.
    //     * Neither the name of Google Inc. nor the names of its
    // contributors may be used to endorse or promote products derived from
    // this software without specific prior written permission.
    //
    // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
    // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
    // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
    // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
    // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
    // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    
    /*
    Package proto converts data structures to and from the wire format of
    protocol buffers.  It works in concert with the Go source code generated
    for .proto files by the protocol compiler.
    
    A summary of the properties of the protocol buffer interface
    for a protocol buffer variable v:
    
      - Names are turned from camel_case to CamelCase for export.
      - There are no methods on v to set fields; just treat
    	them as structure fields.
      - There are getters that return a field's value if set,
    	and return the field's default value if unset.
    	The getters work even if the receiver is a nil message.
      - The zero value for a struct is its correct initialization state.
    	All desired fields must be set before marshaling.
      - A Reset() method will restore a protobuf struct to its zero state.
      - Non-repeated fields are pointers to the values; nil means unset.
    	That is, optional or required field int32 f becomes F *int32.
      - Repeated fields are slices.
      - Helper functions are available to aid the setting of fields.
    	msg.Foo = proto.String("hello") // set field
      - Constants are defined to hold the default values of all fields that
    	have them.  They have the form Default_StructName_FieldName.
    	Because the getter methods handle defaulted values,
    	direct use of these constants should be rare.
      - Enums are given type names and maps from names to values.
    	Enum values are prefixed by the enclosing message's name, or by the
    	enum's type name if it is a top-level enum. Enum types have a String
    	method, and a Enum method to assist in message construction.
      - Nested messages, groups and enums have type names prefixed with the name of
    	the surrounding message type.
      - Extensions are given descriptor names that start with E_,
    	followed by an underscore-delimited list of the nested messages
    	that contain it (if any) followed by the CamelCased name of the
    	extension field itself.  HasExtension, ClearExtension, GetExtension
    	and SetExtension are functions for manipulating extensions.
      - Oneof field sets are given a single field in their message,
    	with distinguished wrapper types for each possible field value.
      - Marshal and Unmarshal are functions to encode and decode the wire format.
    
    When the .proto file specifies `syntax="proto3"`, there are some differences:
    
      - Non-repeated fields of non-message type are values instead of pointers.
      - Enum types do not get an Enum method.
    
    The simplest way to describe this is to see an example.
    Given file test.proto, containing
    
    	package example;
    
    	enum FOO { X = 17; }
    
    	message Test {
    	  required string label = 1;
    	  optional int32 type = 2 [default=77];
    	  repeated int64 reps = 3;
    	  optional group OptionalGroup = 4 {
    	    required string RequiredField = 5;
    	  }
    	  oneof union {
    	    int32 number = 6;
    	    string name = 7;
    	  }
    	}
    
    The resulting file, test.pb.go, is:
    
    	package example
    
    	import proto "github.com/golang/protobuf/proto"
    	import math "math"
    
    	type FOO int32
    	const (
    		FOO_X FOO = 17
    	)
    	var FOO_name = map[int32]string{
    		17: "X",
    	}
    	var FOO_value = map[string]int32{
    		"X": 17,
    	}
    
    	func (x FOO) Enum() *FOO {
    		p := new(FOO)
    		*p = x
    		return p
    	}
    	func (x FOO) String() string {
    		return proto.EnumName(FOO_name, int32(x))
    	}
    	func (x *FOO) UnmarshalJSON(data []byte) error {
    		value, err := proto.UnmarshalJSONEnum(FOO_value, data)
    		if err != nil {
    			return err
    		}
    		*x = FOO(value)
    		return nil
    	}
    
    	type Test struct {
    		Label         *string             `protobuf:"bytes,1,req,name=label" json:"label,omitempty"`
    		Type          *int32              `protobuf:"varint,2,opt,name=type,def=77" json:"type,omitempty"`
    		Reps          []int64             `protobuf:"varint,3,rep,name=reps" json:"reps,omitempty"`
    		Optionalgroup *Test_OptionalGroup `protobuf:"group,4,opt,name=OptionalGroup" json:"optionalgroup,omitempty"`
    		// Types that are valid to be assigned to Union:
    		//	*Test_Number
    		//	*Test_Name
    		Union            isTest_Union `protobuf_oneof:"union"`
    		XXX_unrecognized []byte       `json:"-"`
    	}
    	func (m *Test) Reset()         { *m = Test{} }
    	func (m *Test) String() string { return proto.CompactTextString(m) }
    	func (*Test) ProtoMessage() {}
    
    	type isTest_Union interface {
    		isTest_Union()
    	}
    
    	type Test_Number struct {
    		Number int32 `protobuf:"varint,6,opt,name=number"`
    	}
    	type Test_Name struct {
    		Name string `protobuf:"bytes,7,opt,name=name"`
    	}
    
    	func (*Test_Number) isTest_Union() {}
    	func (*Test_Name) isTest_Union()   {}
    
    	func (m *Test) GetUnion() isTest_Union {
    		if m != nil {
    			return m.Union
    		}
    		return nil
    	}
    	const Default_Test_Type int32 = 77
    
    	func (m *Test) GetLabel() string {
    		if m != nil && m.Label != nil {
    			return *m.Label
    		}
    		return ""
    	}
    
    	func (m *Test) GetType() int32 {
    		if m != nil && m.Type != nil {
    			return *m.Type
    		}
    		return Default_Test_Type
    	}
    
    	func (m *Test) GetOptionalgroup() *Test_OptionalGroup {
    		if m != nil {
    			return m.Optionalgroup
    		}
    		return nil
    	}
    
    	type Test_OptionalGroup struct {
    		RequiredField *string `protobuf:"bytes,5,req" json:"RequiredField,omitempty"`
    	}
    	func (m *Test_OptionalGroup) Reset()         { *m = Test_OptionalGroup{} }
    	func (m *Test_OptionalGroup) String() string { return proto.CompactTextString(m) }
    
    	func (m *Test_OptionalGroup) GetRequiredField() string {
    		if m != nil && m.RequiredField != nil {
    			return *m.RequiredField
    		}
    		return ""
    	}
    
    	func (m *Test) GetNumber() int32 {
    		if x, ok := m.GetUnion().(*Test_Number); ok {
    			return x.Number
    		}
    		return 0
    	}
    
    	func (m *Test) GetName() string {
    		if x, ok := m.GetUnion().(*Test_Name); ok {
    			return x.Name
    		}
    		return ""
    	}
    
    	func init() {
    		proto.RegisterEnum("example.FOO", FOO_name, FOO_value)
    	}
    
    To create and play with a Test object:
    
    	package main
    
    	import (
    		"log"
    
    		"github.com/golang/protobuf/proto"
    		pb "./example.pb"
    	)
    
    	func main() {
    		test := &pb.Test{
    			Label: proto.String("hello"),
    			Type:  proto.Int32(17),
    			Reps:  []int64{1, 2, 3},
    			Optionalgroup: &pb.Test_OptionalGroup{
    				RequiredField: proto.String("good bye"),
    			},
    			Union: &pb.Test_Name{"fred"},
    		}
    		data, err := proto.Marshal(test)
    		if err != nil {
    			log.Fatal("marshaling error: ", err)
    		}
    		newTest := &pb.Test{}
    		err = proto.Unmarshal(data, newTest)
    		if err != nil {
    			log.Fatal("unmarshaling error: ", err)
    		}
    		// Now test and newTest contain the same data.
    		if test.GetLabel() != newTest.GetLabel() {
    			log.Fatalf("data mismatch %q != %q", test.GetLabel(), newTest.GetLabel())
    		}
    		// Use a type switch to determine which oneof was set.
    		switch u := test.Union.(type) {
    		case *pb.Test_Number: // u.Number contains the number.
    		case *pb.Test_Name: // u.Name contains the string.
    		}
    		// etc.
    	}
    */
    package proto
    
    import (
    	"encoding/json"
    	"fmt"
    	"log"
    	"reflect"
    	"sort"
    	"strconv"
    	"sync"
    )
    
    
    ale's avatar
    ale committed
    // RequiredNotSetError is an error type returned by either Marshal or Unmarshal.
    // Marshal reports this when a required field is not initialized.
    // Unmarshal reports this when a required field is missing from the wire data.
    type RequiredNotSetError struct{ field string }
    
    func (e *RequiredNotSetError) Error() string {
    	if e.field == "" {
    		return fmt.Sprintf("proto: required field not set")
    	}
    	return fmt.Sprintf("proto: required field %q not set", e.field)
    }
    func (e *RequiredNotSetError) RequiredNotSet() bool {
    	return true
    
    ale's avatar
    ale committed
    }
    
    
    ale's avatar
    ale committed
    type invalidUTF8Error struct{ field string }
    
    func (e *invalidUTF8Error) Error() string {
    	if e.field == "" {
    		return "proto: invalid UTF-8 detected"
    	}
    	return fmt.Sprintf("proto: field %q contains invalid UTF-8", e.field)
    }
    func (e *invalidUTF8Error) InvalidUTF8() bool {
    	return true
    
    ale's avatar
    ale committed
    }
    
    
    ale's avatar
    ale committed
    // errInvalidUTF8 is a sentinel error to identify fields with invalid UTF-8.
    // This error should not be exposed to the external API as such errors should
    // be recreated with the field information.
    var errInvalidUTF8 = &invalidUTF8Error{}
    
    ale's avatar
    ale committed
    
    
    ale's avatar
    ale committed
    // isNonFatal reports whether the error is either a RequiredNotSet error
    // or a InvalidUTF8 error.
    func isNonFatal(err error) bool {
    	if re, ok := err.(interface{ RequiredNotSet() bool }); ok && re.RequiredNotSet() {
    		return true
    	}
    	if re, ok := err.(interface{ InvalidUTF8() bool }); ok && re.InvalidUTF8() {
    		return true
    	}
    	return false
    }
    
    type nonFatal struct{ E error }
    
    ale's avatar
    ale committed
    
    
    ale's avatar
    ale committed
    // Merge merges err into nf and reports whether it was successful.
    // Otherwise it returns false for any fatal non-nil errors.
    func (nf *nonFatal) Merge(err error) (ok bool) {
    	if err == nil {
    		return true // not an error
    	}
    	if !isNonFatal(err) {
    		return false // fatal error
    	}
    	if nf.E == nil {
    		nf.E = err // store first instance of non-fatal error
    	}
    	return true
    }
    
    // Message is implemented by generated protocol buffer messages.
    type Message interface {
    	Reset()
    	String() string
    	ProtoMessage()
    }
    
    ale's avatar
    ale committed
    
    // A Buffer is a buffer manager for marshaling and unmarshaling
    // protocol buffers.  It may be reused between invocations to
    // reduce memory usage.  It is not necessary to use a Buffer;
    // the global functions Marshal and Unmarshal create a
    // temporary Buffer and are fine for most applications.
    type Buffer struct {
    	buf   []byte // encode/decode byte stream
    	index int    // read point
    
    
    ale's avatar
    ale committed
    	deterministic bool
    
    ale's avatar
    ale committed
    }
    
    // NewBuffer allocates a new Buffer and initializes its internal data to
    // the contents of the argument slice.
    func NewBuffer(e []byte) *Buffer {
    	return &Buffer{buf: e}
    }
    
    // Reset resets the Buffer, ready for marshaling a new protocol buffer.
    func (p *Buffer) Reset() {
    	p.buf = p.buf[0:0] // for reading/writing
    	p.index = 0        // for reading
    }
    
    // SetBuf replaces the internal buffer with the slice,
    // ready for unmarshaling the contents of the slice.
    func (p *Buffer) SetBuf(s []byte) {
    	p.buf = s
    	p.index = 0
    }
    
    // Bytes returns the contents of the Buffer.
    func (p *Buffer) Bytes() []byte { return p.buf }
    
    
    ale's avatar
    ale committed
    // SetDeterministic sets whether to use deterministic serialization.
    //
    // Deterministic serialization guarantees that for a given binary, equal
    // messages will always be serialized to the same bytes. This implies:
    //
    //   - Repeated serialization of a message will return the same bytes.
    //   - Different processes of the same binary (which may be executing on
    //     different machines) will serialize equal messages to the same bytes.
    //
    // Note that the deterministic serialization is NOT canonical across
    // languages. It is not guaranteed to remain stable over time. It is unstable
    // across different builds with schema changes due to unknown fields.
    // Users who need canonical serialization (e.g., persistent storage in a
    // canonical form, fingerprinting, etc.) should define their own
    // canonicalization specification and implement their own serializer rather
    // than relying on this API.
    //
    // If deterministic serialization is requested, map entries will be sorted
    // by keys in lexographical order. This is an implementation detail and
    // subject to change.
    func (p *Buffer) SetDeterministic(deterministic bool) {
    	p.deterministic = deterministic
    }
    
    
    ale's avatar
    ale committed
    402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
    /*
     * Helper routines for simplifying the creation of optional fields of basic type.
     */
    
    // Bool is a helper routine that allocates a new bool value
    // to store v and returns a pointer to it.
    func Bool(v bool) *bool {
    	return &v
    }
    
    // Int32 is a helper routine that allocates a new int32 value
    // to store v and returns a pointer to it.
    func Int32(v int32) *int32 {
    	return &v
    }
    
    // Int is a helper routine that allocates a new int32 value
    // to store v and returns a pointer to it, but unlike Int32
    // its argument value is an int.
    func Int(v int) *int32 {
    	p := new(int32)
    	*p = int32(v)
    	return p
    }
    
    // Int64 is a helper routine that allocates a new int64 value
    // to store v and returns a pointer to it.
    func Int64(v int64) *int64 {
    	return &v
    }
    
    // Float32 is a helper routine that allocates a new float32 value
    // to store v and returns a pointer to it.
    func Float32(v float32) *float32 {
    	return &v
    }
    
    // Float64 is a helper routine that allocates a new float64 value
    // to store v and returns a pointer to it.
    func Float64(v float64) *float64 {
    	return &v
    }
    
    // Uint32 is a helper routine that allocates a new uint32 value
    // to store v and returns a pointer to it.
    func Uint32(v uint32) *uint32 {
    	return &v
    }
    
    // Uint64 is a helper routine that allocates a new uint64 value
    // to store v and returns a pointer to it.
    func Uint64(v uint64) *uint64 {
    	return &v
    }
    
    // String is a helper routine that allocates a new string value
    // to store v and returns a pointer to it.
    func String(v string) *string {
    	return &v
    }
    
    // EnumName is a helper function to simplify printing protocol buffer enums
    // by name.  Given an enum map and a value, it returns a useful string.
    func EnumName(m map[int32]string, v int32) string {
    	s, ok := m[v]
    	if ok {
    		return s
    	}
    	return strconv.Itoa(int(v))
    }
    
    // UnmarshalJSONEnum is a helper function to simplify recovering enum int values
    // from their JSON-encoded representation. Given a map from the enum's symbolic
    // names to its int values, and a byte buffer containing the JSON-encoded
    // value, it returns an int32 that can be cast to the enum type by the caller.
    //
    // The function can deal with both JSON representations, numeric and symbolic.
    func UnmarshalJSONEnum(m map[string]int32, data []byte, enumName string) (int32, error) {
    	if data[0] == '"' {
    		// New style: enums are strings.
    		var repr string
    		if err := json.Unmarshal(data, &repr); err != nil {
    			return -1, err
    		}
    		val, ok := m[repr]
    		if !ok {
    			return 0, fmt.Errorf("unrecognized enum %s value %q", enumName, repr)
    		}
    		return val, nil
    	}
    	// Old style: enums are ints.
    	var val int32
    	if err := json.Unmarshal(data, &val); err != nil {
    		return 0, fmt.Errorf("cannot unmarshal %#q into enum %s", data, enumName)
    	}
    	return val, nil
    }
    
    // DebugPrint dumps the encoded data in b in a debugging format with a header
    // including the string s. Used in testing but made available for general debugging.
    func (p *Buffer) DebugPrint(s string, b []byte) {
    	var u uint64
    
    	obuf := p.buf
    	index := p.index
    	p.buf = b
    	p.index = 0
    	depth := 0
    
    	fmt.Printf("\n--- %s ---\n", s)
    
    out:
    	for {
    		for i := 0; i < depth; i++ {
    			fmt.Print("  ")
    		}
    
    		index := p.index
    		if index == len(p.buf) {
    			break
    		}
    
    		op, err := p.DecodeVarint()
    		if err != nil {
    			fmt.Printf("%3d: fetching op err %v\n", index, err)
    			break out
    		}
    		tag := op >> 3
    		wire := op & 7
    
    		switch wire {
    		default:
    			fmt.Printf("%3d: t=%3d unknown wire=%d\n",
    				index, tag, wire)
    			break out
    
    		case WireBytes:
    			var r []byte
    
    			r, err = p.DecodeRawBytes(false)
    			if err != nil {
    				break out
    			}
    			fmt.Printf("%3d: t=%3d bytes [%d]", index, tag, len(r))
    			if len(r) <= 6 {
    				for i := 0; i < len(r); i++ {
    					fmt.Printf(" %.2x", r[i])
    				}
    			} else {
    				for i := 0; i < 3; i++ {
    					fmt.Printf(" %.2x", r[i])
    				}
    				fmt.Printf(" ..")
    				for i := len(r) - 3; i < len(r); i++ {
    					fmt.Printf(" %.2x", r[i])
    				}
    			}
    			fmt.Printf("\n")
    
    		case WireFixed32:
    			u, err = p.DecodeFixed32()
    			if err != nil {
    				fmt.Printf("%3d: t=%3d fix32 err %v\n", index, tag, err)
    				break out
    			}
    			fmt.Printf("%3d: t=%3d fix32 %d\n", index, tag, u)
    
    		case WireFixed64:
    			u, err = p.DecodeFixed64()
    			if err != nil {
    				fmt.Printf("%3d: t=%3d fix64 err %v\n", index, tag, err)
    				break out
    			}
    			fmt.Printf("%3d: t=%3d fix64 %d\n", index, tag, u)
    
    		case WireVarint:
    			u, err = p.DecodeVarint()
    			if err != nil {
    				fmt.Printf("%3d: t=%3d varint err %v\n", index, tag, err)
    				break out
    			}
    			fmt.Printf("%3d: t=%3d varint %d\n", index, tag, u)
    
    		case WireStartGroup:
    			fmt.Printf("%3d: t=%3d start\n", index, tag)
    			depth++
    
    		case WireEndGroup:
    			depth--
    			fmt.Printf("%3d: t=%3d end\n", index, tag)
    		}
    	}
    
    	if depth != 0 {
    		fmt.Printf("%3d: start-end not balanced %d\n", p.index, depth)
    	}
    	fmt.Printf("\n")
    
    	p.buf = obuf
    	p.index = index
    }
    
    // SetDefaults sets unset protocol buffer fields to their default values.
    // It only modifies fields that are both unset and have defined defaults.
    // It recursively sets default values in any non-nil sub-messages.
    func SetDefaults(pb Message) {
    	setDefaults(reflect.ValueOf(pb), true, false)
    }
    
    // v is a pointer to a struct.
    func setDefaults(v reflect.Value, recur, zeros bool) {
    	v = v.Elem()
    
    	defaultMu.RLock()
    	dm, ok := defaults[v.Type()]
    	defaultMu.RUnlock()
    	if !ok {
    		dm = buildDefaultMessage(v.Type())
    		defaultMu.Lock()
    		defaults[v.Type()] = dm
    		defaultMu.Unlock()
    	}
    
    	for _, sf := range dm.scalars {
    		f := v.Field(sf.index)
    		if !f.IsNil() {
    			// field already set
    			continue
    		}
    		dv := sf.value
    		if dv == nil && !zeros {
    			// no explicit default, and don't want to set zeros
    			continue
    		}
    		fptr := f.Addr().Interface() // **T
    		// TODO: Consider batching the allocations we do here.
    		switch sf.kind {
    		case reflect.Bool:
    			b := new(bool)
    			if dv != nil {
    				*b = dv.(bool)
    			}
    			*(fptr.(**bool)) = b
    		case reflect.Float32:
    			f := new(float32)
    			if dv != nil {
    				*f = dv.(float32)
    			}
    			*(fptr.(**float32)) = f
    		case reflect.Float64:
    			f := new(float64)
    			if dv != nil {
    				*f = dv.(float64)
    			}
    			*(fptr.(**float64)) = f
    		case reflect.Int32:
    			// might be an enum
    			if ft := f.Type(); ft != int32PtrType {
    				// enum
    				f.Set(reflect.New(ft.Elem()))
    				if dv != nil {
    					f.Elem().SetInt(int64(dv.(int32)))
    				}
    			} else {
    				// int32 field
    				i := new(int32)
    				if dv != nil {
    					*i = dv.(int32)
    				}
    				*(fptr.(**int32)) = i
    			}
    		case reflect.Int64:
    			i := new(int64)
    			if dv != nil {
    				*i = dv.(int64)
    			}
    			*(fptr.(**int64)) = i
    		case reflect.String:
    			s := new(string)
    			if dv != nil {
    				*s = dv.(string)
    			}
    			*(fptr.(**string)) = s
    		case reflect.Uint8:
    			// exceptional case: []byte
    			var b []byte
    			if dv != nil {
    				db := dv.([]byte)
    				b = make([]byte, len(db))
    				copy(b, db)
    			} else {
    				b = []byte{}
    			}
    			*(fptr.(*[]byte)) = b
    		case reflect.Uint32:
    			u := new(uint32)
    			if dv != nil {
    				*u = dv.(uint32)
    			}
    			*(fptr.(**uint32)) = u
    		case reflect.Uint64:
    			u := new(uint64)
    			if dv != nil {
    				*u = dv.(uint64)
    			}
    			*(fptr.(**uint64)) = u
    		default:
    			log.Printf("proto: can't set default for field %v (sf.kind=%v)", f, sf.kind)
    		}
    	}
    
    	for _, ni := range dm.nested {
    		f := v.Field(ni)
    		// f is *T or []*T or map[T]*T
    		switch f.Kind() {
    		case reflect.Ptr:
    			if f.IsNil() {
    				continue
    			}
    			setDefaults(f, recur, zeros)
    
    		case reflect.Slice:
    			for i := 0; i < f.Len(); i++ {
    				e := f.Index(i)
    				if e.IsNil() {
    					continue
    				}
    				setDefaults(e, recur, zeros)
    			}
    
    		case reflect.Map:
    			for _, k := range f.MapKeys() {
    				e := f.MapIndex(k)
    				if e.IsNil() {
    					continue
    				}
    				setDefaults(e, recur, zeros)
    			}
    		}
    	}
    }
    
    var (
    	// defaults maps a protocol buffer struct type to a slice of the fields,
    	// with its scalar fields set to their proto-declared non-zero default values.
    	defaultMu sync.RWMutex
    	defaults  = make(map[reflect.Type]defaultMessage)
    
    	int32PtrType = reflect.TypeOf((*int32)(nil))
    )
    
    // defaultMessage represents information about the default values of a message.
    type defaultMessage struct {
    	scalars []scalarField
    	nested  []int // struct field index of nested messages
    }
    
    type scalarField struct {
    	index int          // struct field index
    	kind  reflect.Kind // element type (the T in *T or []T)
    	value interface{}  // the proto-declared default value, or nil
    }
    
    // t is a struct type.
    func buildDefaultMessage(t reflect.Type) (dm defaultMessage) {
    	sprop := GetProperties(t)
    	for _, prop := range sprop.Prop {
    		fi, ok := sprop.decoderTags.get(prop.Tag)
    		if !ok {
    			// XXX_unrecognized
    			continue
    		}
    		ft := t.Field(fi).Type
    
    		sf, nested, err := fieldDefault(ft, prop)
    		switch {
    		case err != nil:
    			log.Print(err)
    		case nested:
    			dm.nested = append(dm.nested, fi)
    		case sf != nil:
    			sf.index = fi
    			dm.scalars = append(dm.scalars, *sf)
    		}
    	}
    
    	return dm
    }
    
    // fieldDefault returns the scalarField for field type ft.
    // sf will be nil if the field can not have a default.
    // nestedMessage will be true if this is a nested message.
    // Note that sf.index is not set on return.
    func fieldDefault(ft reflect.Type, prop *Properties) (sf *scalarField, nestedMessage bool, err error) {
    	var canHaveDefault bool
    	switch ft.Kind() {
    	case reflect.Ptr:
    		if ft.Elem().Kind() == reflect.Struct {
    			nestedMessage = true
    		} else {
    			canHaveDefault = true // proto2 scalar field
    		}
    
    	case reflect.Slice:
    		switch ft.Elem().Kind() {
    		case reflect.Ptr:
    			nestedMessage = true // repeated message
    		case reflect.Uint8:
    			canHaveDefault = true // bytes field
    		}
    
    	case reflect.Map:
    		if ft.Elem().Kind() == reflect.Ptr {
    			nestedMessage = true // map with message values
    		}
    	}
    
    	if !canHaveDefault {
    		if nestedMessage {
    			return nil, true, nil
    		}
    		return nil, false, nil
    	}
    
    	// We now know that ft is a pointer or slice.
    	sf = &scalarField{kind: ft.Elem().Kind()}
    
    	// scalar fields without defaults
    	if !prop.HasDefault {
    		return sf, false, nil
    	}
    
    	// a scalar field: either *T or []byte
    	switch ft.Elem().Kind() {
    	case reflect.Bool:
    		x, err := strconv.ParseBool(prop.Default)
    		if err != nil {
    			return nil, false, fmt.Errorf("proto: bad default bool %q: %v", prop.Default, err)
    		}
    		sf.value = x
    	case reflect.Float32:
    		x, err := strconv.ParseFloat(prop.Default, 32)
    		if err != nil {
    			return nil, false, fmt.Errorf("proto: bad default float32 %q: %v", prop.Default, err)
    		}
    		sf.value = float32(x)
    	case reflect.Float64:
    		x, err := strconv.ParseFloat(prop.Default, 64)
    		if err != nil {
    			return nil, false, fmt.Errorf("proto: bad default float64 %q: %v", prop.Default, err)
    		}
    		sf.value = x
    	case reflect.Int32:
    		x, err := strconv.ParseInt(prop.Default, 10, 32)
    		if err != nil {
    			return nil, false, fmt.Errorf("proto: bad default int32 %q: %v", prop.Default, err)
    		}
    		sf.value = int32(x)
    	case reflect.Int64:
    		x, err := strconv.ParseInt(prop.Default, 10, 64)
    		if err != nil {
    			return nil, false, fmt.Errorf("proto: bad default int64 %q: %v", prop.Default, err)
    		}
    		sf.value = x
    	case reflect.String:
    		sf.value = prop.Default
    	case reflect.Uint8:
    		// []byte (not *uint8)
    		sf.value = []byte(prop.Default)
    	case reflect.Uint32:
    		x, err := strconv.ParseUint(prop.Default, 10, 32)
    		if err != nil {
    			return nil, false, fmt.Errorf("proto: bad default uint32 %q: %v", prop.Default, err)
    		}
    		sf.value = uint32(x)
    	case reflect.Uint64:
    		x, err := strconv.ParseUint(prop.Default, 10, 64)
    		if err != nil {
    			return nil, false, fmt.Errorf("proto: bad default uint64 %q: %v", prop.Default, err)
    		}
    		sf.value = x
    	default:
    		return nil, false, fmt.Errorf("proto: unhandled def kind %v", ft.Elem().Kind())
    	}
    
    	return sf, false, nil
    }
    
    
    ale's avatar
    ale committed
    // mapKeys returns a sort.Interface to be used for sorting the map keys.
    
    ale's avatar
    ale committed
    // Map fields may have key types of non-float scalars, strings and enums.
    func mapKeys(vs []reflect.Value) sort.Interface {
    
    ale's avatar
    ale committed
    	s := mapKeySorter{vs: vs}
    
    ale's avatar
    ale committed
    
    
    ale's avatar
    ale committed
    	// Type specialization per https://developers.google.com/protocol-buffers/docs/proto#maps.
    
    ale's avatar
    ale committed
    	if len(vs) == 0 {
    		return s
    	}
    	switch vs[0].Kind() {
    	case reflect.Int32, reflect.Int64:
    		s.less = func(a, b reflect.Value) bool { return a.Int() < b.Int() }
    	case reflect.Uint32, reflect.Uint64:
    		s.less = func(a, b reflect.Value) bool { return a.Uint() < b.Uint() }
    
    ale's avatar
    ale committed
    	case reflect.Bool:
    		s.less = func(a, b reflect.Value) bool { return !a.Bool() && b.Bool() } // false < true
    	case reflect.String:
    		s.less = func(a, b reflect.Value) bool { return a.String() < b.String() }
    	default:
    		panic(fmt.Sprintf("unsupported map key type: %v", vs[0].Kind()))
    
    ale's avatar
    ale committed
    	}
    
    	return s
    }
    
    type mapKeySorter struct {
    	vs   []reflect.Value
    	less func(a, b reflect.Value) bool
    }
    
    func (s mapKeySorter) Len() int      { return len(s.vs) }
    func (s mapKeySorter) Swap(i, j int) { s.vs[i], s.vs[j] = s.vs[j], s.vs[i] }
    func (s mapKeySorter) Less(i, j int) bool {
    	return s.less(s.vs[i], s.vs[j])
    }
    
    // isProto3Zero reports whether v is a zero proto3 value.
    func isProto3Zero(v reflect.Value) bool {
    	switch v.Kind() {
    	case reflect.Bool:
    		return !v.Bool()
    	case reflect.Int32, reflect.Int64:
    		return v.Int() == 0
    	case reflect.Uint32, reflect.Uint64:
    		return v.Uint() == 0
    	case reflect.Float32, reflect.Float64:
    		return v.Float() == 0
    	case reflect.String:
    		return v.String() == ""
    	}
    	return false
    }
    
    // ProtoPackageIsVersion2 is referenced from generated protocol buffer files
    // to assert that that code is compatible with this version of the proto package.
    const ProtoPackageIsVersion2 = true
    
    // ProtoPackageIsVersion1 is referenced from generated protocol buffer files
    // to assert that that code is compatible with this version of the proto package.
    const ProtoPackageIsVersion1 = true
    
    ale's avatar
    ale committed
    
    // InternalMessageInfo is a type used internally by generated .pb.go files.
    // This type is not intended to be used by non-generated code.
    // This type is not subject to any compatibility guarantee.
    type InternalMessageInfo struct {
    	marshal   *marshalInfo
    	unmarshal *unmarshalInfo
    	merge     *mergeInfo
    	discard   *discardInfo
    }